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DYNAMIC DATA STRUCTURES FOR

1] TWO-DIMENSIONAL SEARCHING

Roberto Tamassia, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1988

In this thesis we investigate dynamic data structures and algorithms for searching in a sub-

division of the plane. Three specific problems have been addressed in this area. The first prob-

r lem, dynamic point location, considers a geometric subdivision of the plane into polygonal

regions, and asks for the region that contains a given query point. The second problem, dynamic

planar embedding, considers a topological subdivision of the plane induced by a planar embed-

ding of a graph, and asks for a region that contains two given query vertices on its boundary (if

one exists). The third problem, dynamic transitive closure, considers a planar acyclic digraph

embedded in the plane, and asks for testing the existence of and/or reporting a directed path

between two query vertices. In all of the three problems the update operations consist of

inserting/deleting vertices and edges. We present several dynamic techniques that improve pre-

viously published results in the area. The space requirement ranges from 0 (n) to 0 (n log n),

and the query and update times range from 0 (log n) to 0 (log2 n), where n is the size of the sub-

division. In addition to their good theoretical space/time performance, all the data structures and

algorithms presented are also practical and easy to implement, and therefore suited for real-

world applications.
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CHAPTER 1
U

INTRODUCTION

1.1. Dynamic Data Structures

In recent years, the design of dynamic data structures has received increasing attention, and

is one of the most challenging areas of theoretical computer science.

As a typical example, consider search problems where a set S of objects is given. We want

to answer queries about these objects in an on-line fashion, i.e., the queries are not known in

r- advance, and the answer to a query must be given before the next query can be processed. Typi-

cally, the set S is represented by means of a data structure D on which the query operations can

be efficiently performed. The complexity of such a data structure is usually measured in terms

of the space required for storing D, the preprocessing time needed to construct D, and the query

tuae. In several applications the set S is not static, but dynamically evolves in time. This can be

modeled by r,-.s of update operations that modify S and can be arbitrarily interleavcd with the

queries. Therefore, the problem arises of designing a dynamic data structure that supports on-

* line both queries and updates on S. In this case, the previous complexity measures are supple-

mented by the time bounds for the update operations.

The classical dictionary problem is the simplest example of a dynamic search problem.

Here, S is a subset of an ordered set U, the queries ask whether a given element of U is in S, and

updates are insertions and deletions of elements. For this problem, the earliest example of an

efficient dynamic data structure is the AVL tree [1], which requires linear space and supports

queries, insertions, and deletions in logarithmic time.

Our investigations focus on the problem of searching in a subdivision of the plane, a funda-

mental issue in computational geometry, for it represents the 2-dimensional extension of the dic-

tionary problem. Three specific problems have been addressed in this area. The first problem,

dynamic point location, considers a geometric subdivision of the plane into polygonal regions,

ii, ,,t, In lli l l IN Ill |P-' a I ' '



and asks for the region that contains a given query point. The second problem, dynamic planar

embedding, considers a topological subdivision of the plane induced by a planar embedding of a

graph G, and asks for a region that contains two given query vertices of G on its boundary (if

one exists). The third problem, dynamic transitive closure considers a planar acyclic digraph G

embedded in the plane, and asks for testing the existence of or reporting a directed path between

two query vertices of G. In all of the three problems the update operations consist of inserting or -

deleting vertices and edges.

1.2. Overview

This thesis is conceptually subdivided into two parts. In the first part, consisting of

Chapters 2, 3, 4, and 5, we consider searching in a geometric structure, and present three

dynamic techniques for planar point location. In the second part, consisting of Chapters 6 and

7, we consider searching in a topological structure, and present dynamic techniques for main-

taining the planar embedding and the transitive closure of a planar graph.

In Chapter 2, we provide basic geometric definitions and summarize previous research on

planar point location, a fundamental geometric search problem which is used as a subroutine in a

variety of algorithms. Most of the past research on planar point location has been targeted to the

static case, where the subdivision is fixed, and point location queries have to be answered on-

line. For this instance of the problem several efficient methods are available. The analogy with

one-dimensional search, for which both static and dynamic optimal techniques have long been

known, naturally motivates the desire to develop techniques for dynamic planar point location,

where the planar subdivision can be modified by insertions and deletions of points and segments.

Work on dynamic point location is a rather new undertaking, and in a recent paper [50] Sarnak

and Tarjan indicate as one of the most challenging problems in computational geometry the

development of a fully dynamic point location data structure whose space and query time perfor-

mance are of the same order as that of the best known static techniques for this problem. As

shown in the following, we come very close to this goal.

In Chapter 3, we present a dynamic point location technique for monotone subdivisions.

The update operations are the insertion of a vertex on an edge and of a chain of edges between

two vertices, and their reverse operations. Let n be the number of vertices of the subdivision.

2-
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The data structure uses space 0 (n). The query time is 0 (logn), the time for insertion/deletion

* of a vertex is 0 (log n), and the time for insertion/deletion of a chain with k edges is

0 (log2 n +k), all worst case. This technique is based on the chain method of Lee-Preparata [35].

The emergence of full dynamic capabilities is afforded by a subtle choice of the chain set

(separators), which induces a total order on the set of regions of the planar subdivision.

In Chapter 4, we present a dynamic point location technique for a class of monotone subdi-

visions (which includes convex subdivisions), whose vertices lie on a fixed set of N horizontal

lines. The supported update operations are insertion/deletion of vertices and edges, and (hor-

izontal) translation of vertices. This technique achieves query time 0 (log n +logN), space

0 (n log N), and insertion/deletion time 0 (log n log N), where n is the number of vertices of the

subdivision. Hence, whenever N = 0(n), the query time is 0 (log n), which is optimal. This

S- technique is based on the trapezoid method of Preparata [46], which has been experimentally

shown to be the fastest point location method among those with asymptotically optimal query

time [12]. It is easily realized that in many significant applications the most frequent operation

is point location query, while updates are more rarely executed. Hence, this technique provides

the most efficient solution for such applications.

In Chapter 5, we present a dynamic point location technique for triangulations, which is

based on the incremental reconstruction method of Bentley-Saxe [3] and Overmars [42] for

decomposable searching problems. It achieves 0(log2 n/loglogn) query time, O(n) space
requirement, and 0 (log n/log log n) update time, where n is the number of vertices. This tech-

nique can be used in conjunction with any static point location algorithm.

In Chapter 6, we present a dynamic technique for maintaining on-line the transitive closure

of a planar st-graph, i.e., a planar acyclic digraph embedded in the plane with exactly one source,

s, and one sink, t, both on the external face. This class of graphs was first introduced in the

planarity testing algorithm of Lempel et al. [36], and was fruitfully used in a number of applica-

tions, which include planar graph embedding, graph planarization, graph drawing, floor plan-

ning, planar point location, visibility representations, motion planning, and VLSI layout compac-

tion. Also, planar st-graphs are important in the theory of partially ordered sets, since they are

associated with planar lattices [32]. We show that a planar st-graph G admits two total orders

3



(called leftist and rightist, respectively) on the set V u E u F, where V, E, and F are respectively

the set of vertices, edges, and faces of G, with I V I = n. Assuming that G is to be dynamically

modified by means of insertions of edges and expansions of vertices (and their inverses), we

exhibit a 0 (n)-space dynamic data structure for the maintenance of these orders, such that an

update can be performed in time 0 (log n). From this result, we derive a dynamic data structure

for the transitive-closure query problem, which consists of testing for the existence of (or report-

ing) a directed path between two vertices u and v of G. The space is 0 (n), and the time for

queries and updates is 0 (log n) (worst-case). Also, we show that the discovered dynamic pro-

perties of planar st-graphs provide the topological underpinning of the planar point location tech-

nique for monotone subdivisions presented in Chapter 3, and can be applied to the problem of

dynamic contact chain queries.

In Chapter 7, we present a dynamic technique that allows for incrementally constructing a

planar embedding of a planar graph with n vertices. This problem, referred to as dynamic

embedding problem, naturally arises in interactive CAD layout environments. A query operation

asks whether a new edge (u,v) can be added to the embedding without introducing crossings,

i.e., whether there is a face of the embedding whose boundary contains both u and v. The update

operations are the insertion and deletion of vertices and edges. We present a data structure for

the dynamic embedding problem that uses 0 (n) space and supports queries and updates in time

0 (log n) (worst-case). These results are obtained by maintaining on-line an orientation of the -

graph, called spherical st-orientation, a notion that generalizes planar st-graphs. This technique

has applications to circuit layout, graphics, motion planning, and computer-aided design. It also

constitutes a first step toward the development .of an efficient algorithm for testing on-line the

planarity of a graph, under insertions and deletions of vertices and edges.

As a general remark, we would like to underscore that in addition to their good theoretical

space/time performance, all the data structures and algorithms presented in this thesis are also

practical and easy to implement, and therefore suited for real-world applications.

The material in the thesis is presented so that each chapter can be read independently from

the others. Chapter 2 provides background material for Chapters 3, 4, and 5. For the reader's

convenience, some definitions are repeated wherever appropriate.

4



CHAPTER 2
!

PLANAR POINT LOCATION

2.1. Planar Subdivisions

The motivation for the geometric definitions given below is readily obtained if we view a

point of the plane as the central projection of a point of a hemisphere to whose pole this plane is

tangent.

A vertex v in the plane is either a finite point or a point at infinity (the latter is the projection

re  of a point on the hemisphere equator). An edge e =(u,v) is the portion of the straight line

between u and v, with the only restriction that u and v are not points at infinity associated with

the same direction. Thus, e is either a segment or a straight-line ray, but not a whole straight

line. When both u and v are at infinity, then e is an edge at infinity, i.e., a portion of the line at

infinity (the projection of an arc of the equator). A (polygonal) chain y is a sequence

(ei : ei = (vi,v i + ),i = 1, ... ,p - 1) of edges; it is simple if nonintersecting; it is monotone if any

line parallel to the x-axis intersects y in either a point or a segment. In the following, the notion

* of "left" and "right" refer, when not specified otherwise, to a bottom-up orientation of the

entity being considered (a chain, or, later on, a separator, an edge, etc.).

A simple polygon r is a region of the plane delimited by a simple chain with v, = v 1, called

the boundary of r. Note that r could be unbounded; in this case the boundary of r contains one

or more edges belonging to the line at infinity. A polygon r is monotone if its boundary is parti-

tionable into two monotone chains y, and y2, called the left chain and right chain of r, respec-

tively (see Fig. 2.1). Chains y1 and ft share two vertices, referred to as HIGH (r) and LOW(r),

respectively, with y(HIGH(r)) >y(LOW(r)). In other words, HIGH(r) and LOW(r) are,

respectively, points of maximum and minimum ordinates in polygon r, each of them is unique

unless it is the extreme of either a horizontal edge or an edge at infinity, in which case the selec-

tion between the two edge extremes is arbitrary. A convex polygon is a simple polygon r such

that for any two vertices u and v of r the segment with endpoints u and v lies entirely inside r. A

S



HIGH (r)

LOW (r)

Figure 2.1 Nomenclature for a monotone polygon.

convex polygon is also a monotone polygon.

A planar subdivision 9t is a partition of the plane into simple polygons, called the regions

of 9t. It is easily realized that 91 is determined by a planar graph G embedded in the plane

whose edges are either segments or rays of straight lines (referred to as a "planar straight-line

graph" in [35]): edges, vertices, and chains of G are referred to as edges, vertices, and chains of

9t. The vertices of 91 are both the finite ones and those at infinity. This ensures the validity of

the well-known Euler's formula and its corollaries:

IVI+IRI=IEI+2; IEI< 31VI-6; IRI!21VI-4,

where V, E, and R are respectively the set of vertices, edges, and regions of 9t.

A monotone subdivision 9t is a planar subdivision whose regions are monotone polygons

(see Fig. 2.2(a)). Monotone subdivisions form an important class of planar subdivisions, since

they include convex subdivisions, whose regions are convex polygons (see Fig. 2(b)), and tri-

angulations, whose regions are triangles (see Fig. 2(c)).

6 a.



r (a)(b)

(C)

Figure 2.2 (a) A monotone subdivision. The dashed circle
represents the line at infinity. (b) A convex subdivision.
(c) A triangulation.
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2.2. Point Location Techniques

The point location problem is formulated as follows: Given a planar subdivision 9t with n

vertices, determine to which region of 9t a query point q belongs. If the query point q is on

some vertex/edge of 9t, then that vertex/edge is reported. The repetitive use of 9t and the on-

line requirement on the answers call for a preprocessing of 9 that may ease the query operation,

analogous to sorting and binary search in one-dimensional search. The history of planar point

location research spans more than a decade and is dense in results: the reader is referred to the

extensive literature on this subject [11-13, 34, 35, 37, 46, 47, 501.

Most of the past research on the topic has focused on the static case of planar point loca-

tion, where the subdivision 91 is fixed. For this instance of the problem, several practical tech-

niques are available today (e.g., [12, 13,35,46,501), some of which have O(n) space require-

ment and 0 (log n) query time [13, 50], and are thus provably optimal in the asymptotic sense.

Work on dynamic point location is a rather recent undertaking. Overmars [43] proposed a

technique for the case where the n vertices of 9t are given, the boundary of each region has a

bounded number of edges, and only edges can be easily inserted or deleted. The basic entities

used in Overmars' method are the edges themselves; each edge currently in 91 is stored in a seg-

ment tree defined on the fixed set of vertex abscissae, and the edge fragments assigned to a given

node of the segment tree form a totally ordered set and are therefore efficiently searchable. This

approach yields 0 (nlog n) space requirement, and 0 (log2 n) query and update times. Note that

these measures are unrelated to the current number of edges in 9t. This technique can be

extended to support insertions and deletions of vertices in 0 (log2 n) amortized time, at the

expense of deploying a rather complicated and not very practical data structure.

Another interesting dynamic point location technique, allowing both edge and vertex

updates, is presented by Fries and Mehlhorn [18, 19, 39]. Their approach achieves 0 (n) space

requirement, 0 (log2 n) query time, and 0 (log4 n) amortized update time. If only insertions are

considered, the update time is reduced to 0 (log2 n) (amortized) [39, pp. 135-143].

Tables 2.1 and 2.2 summarize the performance of the aforementioned static and dynamic

point location techniques. The new results on dynamic point location presented in Chapters 3, 4,

and 5 of this thesis are included in Table 2.2.

at,
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Table 2.1 Static point location techniques

Sp Query Time Source NotesXn2 log n Dobkin-1p.on 76 slab method, not practc

n logn Lfe-Prepaata 76 chain method, practical

n logn Lipton-Taian 77 not practical
i n log n logn Prepaata 81 trapezoid method,

I_ practical

n login Kirkpatrick 83 not practical
n logn Edel-brunner et al. 85 chain method with

fractional cascading,

n log n Sarnak-Tajan 85 slab method with
persistent search trees,
practical

Table 2.2 Dynamic point location techniques. Notation:
S(n): space; Q(n): query time I,(n): time for edge
insertion; I4(n): time for vertex insertion; D,(n): time for
edge deletion; D,(n): time for vertex deletion.

S(n) Q(n) 4(n) 1(n) D.n) D,(n) Source Notes
ft logf n log2ft loeni Wn~f log~n log2is Overmiars 85 fixed vertices, regions

with 0 (1) edges, not
prcia vertex

n f log~ft log'ft log'i lognf log4nf Fries-Mehihorn 85 amortized update
times

n log2n loen lon - - Fies-Mehlhorn 84 only insenions,
amotzed update time

n loen logn+k log n logn+k log n This Thesis monotone
Chapter 3 subdivision,

insertons/deletions of
k-edge chains

n IogN login +logN logn IogN log n logN logn logN log n logN This Thesis convex subdivision,
Chapter 4 vertices on N fixed

horizontal lines

-- Rqj=In -7~ -Z log3 i This Thesis triangulations
loglog loglogfn loglog n loglog n log log n Chapter 5

n -logn - f0logn Ing!ogn -slog.s I log Tt
Se Chapter 5

9



CHAPTER 3

DYNAMIC POINT LOCATION: CHAIN METHOD

3.1. Introduction

In this chapter we present a fully dynamic point location technique for monotone subdivi-

sions. The central result is expressed by the following theorem:

Theorem 3.1 Let 9t be a monotone planar subdivision with n vertices. There exists a dynamic

point location data structure with 0(n) space requirement and 0 (log2 n) query time, which

allows for insertion/deletion of a vertex in time 0 (log n) and insertion/deletion of a chain of k

edges in time 0 (log2 n +k), all time bounds being worst-case.

It must be underscored that our method allows for arbitrary insertions and deletions of ver-

tices and edges, the only condition being that monotonicity of the subdivision be preserved. It is

also interesting to observe that the dynamic technique is based on the same geometric objects,

the separating chains, which yielded the first practical, albeit suboptimal, point location tech-

nique of Lee-Preparata [35], and later on the practical and optimal algorithm of Edelsbrunner-

Guibas-Stolfi [13]

Our technique represents a reasonably efficient solution of the dynamic point location prob-

lem in monotone subdivisions. It requires no new sophisticated or bizarre data structures, and it

appears eminently practical.

It remains an open problem whether 0(logn) optimal performance is achievable for

query/update times; in particular, whether the technique of fractional cascading, which achieved

optimality for its suboptimal static predecessor [131, can also be successfully applied to the tech-

nique discussed in this chapter.

: The rest of the chapter is organized as follows. In Section 3.2 we review the technical t2

background and formulate the problem. In Section 3.3 we introduce a total ordering of the

10
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regions of 9t, which plays a crucial role in the dynamic point location algorithm illustrated in

i Section 3.4.

3.2. Preliminaries

We recall from the preceding chapter that a monotone subdivision is a partition of the plane

IM into monotone polygons (see Fig. 3.1(a)). Given a monotone subdivision 9t, a separator Y of 9t

is a monotone chain (v1 , .. • ,vp) of 9t with the property that v I and v. are points at infinity

(hence, each horizontal line intersects a separator either in a point or in a segment). A separator

of 91 is illustrated with bold line segments in Fig. 3.1(a). Given separators al and 02 of 91, we

say that o is to the left of 02, denoted o < 02, if, for any horizontal line I intersecting both a1

and a2 in a single point, the abscissa of the intersection of I with 02 is no smaller than the

corresponding one with al. A partial subdivision is the portion of a monotone subdivision con-

tained between two distinct separators al and 02, with a, < a 2 . A complete family of separators

-----------------

II

15 J 1
r3 r 4

r4 rr,
51 1

I I

r1 r2 . ~13

--'r6 9 ,r 6  r9

(a) (b)

Figure 3.1 (a)) A monotone subdivision 9t. The dashed
circle represents the line at infinity. A separator is shown
with bold line segments. (b) The regular subdivision 9*
obtained from 91 by forming all maximal clusters.
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X for9 9 is a sequence (al,a 2, "o) with a, < a 2 < ... < al, such that every edge of 9t is

contained in at least one separator of I. Notice that from Euler's formula t = 0(n). As shown in

[35], every monotone subdivision admits a complete family of separators.

Given a complete family of separators Z for 9t, it is well-known [35] how to use X to per-
form planar point location in 91. If n is the number of vertices of 9t, then in time 0 (logn) we

m
can decide on which side of a separator the query point q lies; applying this operation as a primi-
tive, a bisection search on Z determines in time 0 (log t. log n) two consecutive separators

between which q lies. This process can be adapted or supplemented to determine the actual

region r to which q belongs.

Since X is used in a binary search fashion, each separator is assigned to a node of a binary

search tree, called the separator-tree S. With a minor abuse of language, we call "node Y" the

node of 3 to which a has been assigned. An edge e of 9t belongs, in general, to a nonempty
interval (aa,ai+1, ".. ,aj) of separators. Let node ok, i :k5j, be the common ancestor of

nodes ri,ci+ 1, " -• ,cr; then e is called a proper edge of at and is stored only once at node qk.

We denote by proper(ok) the set of proper edges of ak, i.e., the edges of ak stored at node ak.

This yields 0(n) storage space while guaranteeing the correctness of the technique (see
[13,35]). Note that edges whose extremes are both at infinity need not be stored.

We now illustrate that a planar subdivision 9t can be constructed by an appropriate

sequence of the following operations:

INSERTPOINT(v,e;ej,e 2 ): Split the edge e=(uw) into two edges el=(uv) and

e2 =(v,w), by inserting vertex v.

REMOVEPOJNT(v;e): Let v be a vertex of degree 2 whose incident edges, el =(u,v) and

e2 = (v,w), are on the same straight line. Remove v and replace e 1 and e 2 with edge e = (u,w).

INSERTCHAIN(T,v,v 2 ,r;rj,r2): Add the monotone chain Y=(v 1 ,wt, ...,wkV2),
with y (v 1) Y (v 2), to9 9 inside region r of 9, which is decomposed into regions r I and r 2, with

r 1 and r2, respectively, to the left and to the right of y, directed from v 1 to v 2.

REMOVECHAIN (yrr): Let y be a monotone chain whose nonextreme vertices have

degree 2. Remove y and merge the regions r 1 and r 2 formerly on the two sides of y into region

r. [The operation is allowed only if the subdivision 91' so obtained is monotone.]

12
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With the above repertory of operations, we claim that a monotone subdivision 9t can

Nalways be transformed into a monotone subdivision 9' having either fewer vertices or fewer

edges. Then by 0 (n) such transformations we obtain the trivial subdivision, whose only region

is the entire plane (bounded by the line at infinity).

Indeed, let a be a separator of 9t, and imagine traversing a from - - to +o-. Let deg-(v)

and deg+(v), respectively, denote the numbers of edges incident on v and lying in the halfplanes

y <y(v) and y >y(v) (assume for simplicity that no edge is horizontal). Let (v 1, "'" ,v) be the

sequence of finite vertices of a with deg+(vi)+deg-(vi) ? 3, as encountered in the traversal of a.

If this sequence is empty, the entire chain can be trivially removed. Therefore, assume p Z 1. If

there are two consecutive vertices vi and vi+ I such that deg+ (vi) k 2 and deg (vi +1) 1 2, then the

chain y (of degree-2 vertices) between vi and vi + I can be deleted by REMOVECHAIN while

r- preserving monotonicity. Suppose that there are no two such vertices. If deg-(v 1) k 2, then the

portion of a from - - to v I can be deleted. Otherwise, deg- (v1 )= 1, and the preceding condi-

tions give raise to the following chain of implications:

I {deg-(vl)=] [deg+(v)Z =* [deg+(v 2)> - "" [deg+(v)>;

the latter shows that the portion of a from v. to + - can be deleted. This establishes our claim.

When all finite vertices have disappeared, the resulting subdivision consists of a closed

P chain of arcs whose union is the line at infinity. Removal of the vertices at infinity completes the

transformation. Since all of the above operations are reversible, this shows that any monotone

subdivision 9t with n vertices can be constructed by 0 (n) operations of the above repertory:

Theorem 3.2 An arbitrary planar subdivision 9t with n vertices can be assembled starting from

the empty subdivision by a sequence of 0 (n) INSERTPOINT and INSERTCHAIN operations,

and can be disassembled to obtain the empty subdivision by a sequence of 0(n) REMO-

VEPOINT and REMOVECHAIN operations.

Although the above operations are sufficient to assemble and disassemble any monotone

subdivision, the following operation is also profitably included in the repertory:

.13



MOVEPOINT (v;x,y): Translate a degree-2 vertex v from its present location to point

(x,y). [ The operation is allowed only if the subdivision 91' so obtained is monotone and topo-

logically equivalent to 91.1

3.3. Ordering the Regions of a Monotone Subdivision

Let 9t be a monotone subdivision, and assume for simplicity that none of its finite edges is

horizontal. Given two regions r, and r2 of 9t, we say that r, is left-adjacent to r2 , denoted

r, cr 2 , if r I and r 2 share an edge e, and any separator of 91 containing e leaves rI to its left and

r 2 to its right. Notice that relation -c is trivially antisymmetric. But we can also show

Lemma 3.1 Relation c on the regions of 91 is acyclic.

Proof: Assume r tcr2 c' .".. rkr. Let Z be a complete family of separators and let

(cy1, ,or- be such that ai separates ri and ri + ,, so that a, <c;2 < ... < k 1. If

ce X leaves rk to its left and r i to its right, we have ak.- 1 < and a< a1 , a contradiction since

the separators are ordered. 0

Thus, the transitive closure of c is a partial order, referred to as to the left of, and denoted

-4. Specifically, r 1 -+r 2 if there is a path from r I to r 2 in the directed graph of the relation c

on the set of regions. Correspondingly, given two regions r, and r 2 of 9t, we say that r, is

below r 2 , denoted r1 Tr 2 , if there is a monotone chain from HIGH (r1 ) to LOW(r 2 ). Obviously,

T is a partial order on the set of regions. The following lemma shows that these two partial ord-

ers are complementary.

Lemma 3.2 Let rI and r 2 be two regions of 91. Then one and only one of the following holds:

r l -+r 2 , r 2 --+r1 , rITr2, r 2 Tr.

Proof: Let 0L be the leftmost separator that contains the left chain of the boundary of r, and,

analogously, let aR be the rightmost separator containing the right chain of the boundary of ri.

These separators partition 9t into five portions, each a partial subdivision: one of them is r1

itself, and the others are denoted L, R, B, and T (see Fig. 3.2). Now, we consider four mutually

exclusive cases for r 2, one of which must occur.
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Figure 3.2 For the proof of Lemma 3.2.

(1) r 2 e L. Consider any sequence of regions (r, -. - ,r) such that r2 -- r'l, r'"*ri+I for

i = 1, ... ,s- 1, and the right chain of r'. has a nonempty intersection with aL. If the right

chain of r'. has an edge that is also on the left boundary of r1 , then r 2-rl. Otherwise, by

the definition of cq,, there is a sequence r',+ 1, -, r",re of regions such that r'j--,r'j+1 for
jf=fs+ 1, "- ,p - 1, and r'p-+r 1. Thus, in all cases, r 2 --+r1 .

(2) r2 e R: Arguing as in (1), we establish r1 -4r 2.

(3) r 2 e B. Since LOW(rj) is the highest ordinate vertex in B, there is a monotone chain from

any vertex in B to LOW (rj), and, in particular, from HIGH (r2 ) to LOW(r 1). Thus r 2Tr1 .

(4) r2 e T. Arguing as in (3), we establish rtr2. 0

We say that r 1 precedes r 2 , denoted r I < r2 , if either r I -- r2 or r, Tr 2.

Theorem 3.3 The relation < on the regions of 9t is a total order.

As an example, the region subscripts in Fig. 3.1(a) reflect the order <.

. . ... - h ,,mnn ,nm m~a N, a~ m mt i l l i l /i s. . ... . ]



A regular subdivision is a monotone subdivision having no pair (r 1,r 2 ) of regions such that

rjTr2 . For example, in Fig. 3.1(a) we have r9 tr 10, which shows that the illustrated monotone

subdivision is not regular. An example of regular subdivision is given in Fig. 3.3(a).

The significance of regular subdivisions is expressed by Theorem 3.4 below. It is easily

realized that there is a unique, complete family 2ff= (a,, "'" ,at) of separators for a regular subdi-

vision 9t. By the definition of separator, all regions to the left of aj precede all those to its right

in the order <. Let $ be the separator-tree for the above family 1. Recalling the rule for stor-

ing the edges of separator a in Z, as reviewed in Section 3.2, we have

Theorem 3.4 In a regular subdivision 9t, the edges of proper(c) in S form a single chain (see

Fig. 3.3(b)).

Proof: Assume for a contradiction that a contains a chain y which is the bottom-to-top concate-

nation of three nonempty chains yi, y2, and y3, where Ti and y3 consist of proper edges of a, and

f2 contains no such edge. Let v I and v2 be the bottom and top vertices, respectively, of 2 and

let e'e yT and e" e 2 be the edges of a incident on v1. Since e" e proper(a), we must have

/ / ,"
14.

/ '3 /
14

5, 16 5,,16 1

7 7
9 ,9

\ \ % 1 1 410 12 /

(a) Wb

Figure 3.3 (a) A regular subdivision, and (b) its chains (proper(a): a~ e)
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4.

e" e proper (a'), where node T' is an ancestor of node a in Z. We claim there is a region r 1

U such that v1 
= HIGH(rI). Otherwise, each separator containing e" - and so a" - also contains

e', contrary to the hypothesis that node a is closest to the root among the nodes whose separator

contains e'. Analogously, we show that there is a region r 2 for which v2 =LOW(r 2 ). Since y2

is a monotone chain from HIGH (r 1) to LOW (r2 ), then r 1 Tr 2 , whence a contradiction. 0l
U

This theorem shows that a regular subdivision has a particularly simple separator-tree. In

the next section we shall show that the property expressed by Theorem 3.4 is crucial for the

efficient dynamization of the chain method for point location. We now slightly generalize the

notion of region in a way that will enable us to show that any monotone subdivision embeds a

unique regular subdivision. We say that two regions, rI and r2 , consecutive in <, with rITr2 ,

are vertically consecutive. We then have

Lemma 3.3 If r I and r 2 are two vertically consecutive regions of a monotone subdivision 9t,

then the chain from HIGH (r 1 ) to LOW(r 2 ) is unique.

Proof: The lemma holds trivially if HIGH (r1) =LOW(r 2). Thus, assume the contrary. Since

*I r Trr2, there is a monotone chain y from HIGH (rl) to LOW(r 2 ). Suppose now, for a contradic-

tion, that there is a monotone chain Y from HIGH(r1 ) to LOW(r 2 ) distinct from y. Then 'y.

defines the boundary of a partial subdivision that contains at least one region of 9t. For any

* region r inside this partial subdivision, there are (possibly empty) chains from HIGH(rl) to

LOW(r) and from HIGH(r) to LOW(r 2), so that rTrTr2 , contrary to the hypothesis that r,

and r2 are consecutive in <. 0

Given two vertically consecutive regions, r, and r2 , in 91, with rTr2, the unique chain

from HIGH (r 1) to LOW (r2 ) is called a channel.

Lemma 3.4 All channels are pairwise vertex-disjoint.

Proof: Assume, for a contradiction, that there are two channels y, and f that are not vertex-

disjoint, where y1 connects regions r, and r 2 , V2 connects regions r 3 and r 4 , and

rI <r 2 <r 3 <r 4 (see Fig. 3.4). Since y, and ^h share a vertex x, there is a chain from

HIGH (r3 ) to LOW(r 2 ), which consists of the portion of y2 from HIGH(r 3) to x, and the portion

17



of yt fromx to LOW(r 2 ). Hence, we have r 3 < r2, a contradiction. 0

Given two vertically consecutive regions, rI and r 2 , with r1 tr 2, we imagine duplicating

the channel from rI to r 2 and view the measure-zero region delimited by the two replicas as a

degenerate polygon joining r, and r 2 and merging them into a new region r, Ur 2 (see Fig. 3.5).

Clearly, we can merge in this fashion any sequence of vertically consecutive pairs. This is for-

mulated in the following definition:

Clusters are recursively defined as follows:

(1) An individual region r is a cluster,

(2) Given two vertically consecutive clusters X, and X2, with X, T 2, their union is a cluster X,

denoted X,"X (the horizontal bar denotes the channel).

A maximal cluster X is one which is not properly contained in any other cluster.

r2

12

x

T2

Figure 3.4 Example for the proof of Lemma 3.4.
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r r2

Figure 3.5 Creation of a channel between two vertically consecutive regions.

The unique subdivision resulting by forming all maximal clusters of 9t is denoted 9t*. Fig-

ure 3.1(b) illustrates the regular subdivision 9" corresponding to the subdivision 9t of Fig.

3.1(a). Notice the clusters r 2-r 3, r 6-r 7 , and rg-ro-r 1j.

The above definition leads us to a convenient string notation for the order <, as well as for

the cluster structure where appropriate. Normally, we shall use lower-case roman letters for

individual regions, lower-case greek letters for clusters, and upper-case roman letters otherwise

(i.e., for collections of consecutive regions not forming a single cluster). Specifically, we have

(1) A cluster (possibly, a region) is a string.

(2) Given two strings A and B, such that the rightmost cluster of A and the leftmost cluster of B

are consecutive (contiguity), then AB is a string.

A subdivision may be represented by means of its structural decomposition. For example, the

subdivision of Fig. 3.1(b) is described by the string

rl lr 4r5X2rsLr2rI3r4r15,
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where Xi = r 2-r 3, X2 =r6 -r 7 , and 73 =r 9 -r 10 -r 11.

Later on, we will find it convenient to explicitly indicate that two consecutive regions r I

and r2 may or may not form a cluster. We shall denote this with the string notation rI --r2,

where "- -" means "potential channel."

We conclude this section with the following straightforward observation:

Theorem 3.5 The subdivision 9t obtained by forming all maximal clusters of a monotone sub-

division 9t is regular.

Note that in the transformation of 9t to 9V only the edges of channels are duplicated. By

Lemma 3.4, each edge is duplicated at most once, thereby ensuring that the number of edges

remains 0 (n).

3.4. Dynamic Point Location

3.4.1. Data structure In the following description, we assume that all sorted lists are stored as

red-black trees [20,55]. We recall the following properties of red-black trees, which are impor-

tant in the subsequent time complexity analyses.

(1) Only 0(1) rotations are needed to rebalance the tree after an insertion/deletion.

(2) The data structure can be used to implement concatenable queues. Operations SPLICE and

SPLIT of concatenable queues take 0 (log n) time and need 0 (log n) rotations each for

rebalancing.

The search data structure consists of a main component, called the augmented separator

tree, and an auxiliary component, called the dictionary. The augmented separator-tree 3 has a

primary and secondary structure. The primary structure is a separator-tree for 9, i.e., each of

its leaves is associated with a region of 9V (a maximal cluster of 9t), and each of its internal

nodes is associated with a separator of W". (The left-to-right order of the leaves of the primary

structure of 3 corresponds to the order < on the regions of 9*.) The secondary structure is a

collection of lists, each realized as a search tree. Specifically, node a points to the list proper(o)

sorted from bottom to top, and the leaf associated with cluster X (briefly called "leaf X") points

to the list regions (X) of the regions that form cluster X, also sorted from bottom to top.
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Given two regions r 1 and r 2 consecutive in <, the separator a between r 1 and r 2 is asso-

U ciated with the least common ancestor of the leaves associated with the respective clusters of r1

and r 2 in 3. By the definition of separator-tree, the edges of a are stored in the path from node

r to the root of 3; by Theorem 3.4, in a regular subdivision, each extreme vertex of proper(a)

splits proper(a'), for some ancestor node a' of node a, into two chains. More precisely, the fol-

lowing simple lemma, stated without --roof, makes explicit the allocation of the edges of a to the

nodes of 3.

Lemma 3.5 Let a be a separator of 91, and al, "" ,ah be the sequence of nodes of 5 on the

path from the root (=a,) to a. Then

o = (a1,a * ,",h,proper(a), Ph, h -,', - )

where ai and P3i are (possibly empty) subchains of proper(ai), i = 1, ... ,h.

In order to dynamically maintain the channels, it is convenient to keep two representatives

e' and e" of each edge e, which are created when e is inserted into 9t. If e does not belong to a

m channel, e' and e" are joined into a double edge and belong to the same proper(c). If instead e

is part of a channel, then e' and e" are single edges and belong to distinct proper (e) and

proper (a"). In the latter case e' and e" are on the boundary of the same cluster X, so that nodes

a' and a" are on the path from leaf X to the root of 3. Therefore, we represent proper(a) by

means of two lists, denoted strandl (a) and strand2 (O). List strand] (s), called primary strand,

stores a representative for each edge of proper(a), in bottom-to-top order. List strand2 (a),

called secondary strand, stores a representative for each double edge of proper(a), in bottom-

to-top order.

Moreover, associated with each chain proper(a) there are two boolean indicators t(a) and

b(a), corresponding respectively to the topmost and bottommost vertices of proper(a).

Specifically, let a' be the ancestor of a such that the topmost vertex of proper (a) is an internal

vertex of the chain proper (a) (for the special case where the topmost vertex of a is at infinity,

we let a' be the father of a). We define t(a) =left if a is to the left of a', and t(a)= right if a is

to the right of a'. Parameter b (a) is analogously defined.
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The dictionary contains the sorted lists of the vertices, edges, and regions of 9t, each sorted

according to the alphabetic order of their names. With each vertex v we store a pointer to the

representative of v in the (at most two) chains proper(a) and proper (a) of which v is a nonex-

treme vertex. With each edge e we store pointers to the two representatives of e in the data

structure. Finally, with each region r we store the vertices HIGH (r) and LOW(r), and a pointer

to the representative of r in the list regions(X) such that X is the maximal cluster containing r.

The dynamic maintenance of the dictionary in the various operations can be trivially performed

in 0 (log n) time, and will not be explicitly mentioned in the following.

To analyze the storage used by the data structure, we note: the primary structure of S has

0 (n) nodes, since there are 0 (n) regions (by Euler's formula) and therefore 0 (n) separators;

the secondary structure of S also has size 0 (n), since there are 0(n) edges in

[proper(a): a e and 0(n) regions in (regions(x): Xe Z (again, by Euler's formula); the

auxiliary component has one record of bounded size per vertex, edge, and region. Therefore, we

conclude

Theorem 3.6 The data structure for dynamic point location has storage space 0 (n).

Note that the above data structure is essentially identical with the one originally proposed

for the static version of the technique (35]. What is remarkable is that the single-chain structure

of the proper edges of any given separator, due to our specific choice of the separator family, is

the key for the emergence of full dynamic capabilities.

We now show that the property expressed by Theorem 3.4 allows us to establish an impor-

tant dynamic feature of the data structure. According to standard terminology, a rotation at node

v of a binary search tree is the restructuring of the subtree rooted at v so that one of the children

of v becomes the root thereof. A rotation is either left or right depending upon whether the right

or left child becomes the new root, respectively. We then have

Lemma 3.6 A rotation at a node of S can be performed in 0 (log n) time.
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Proof: Without loss of generality, we consider a left rotation as illustrated in Fig. 3.6. Clearly,

*the separators stored at nodes outside the subtree rooted at 02 in Fig. 3.6(a) are not affected by

the rotation, nor are those in the subtrees rooted at oi, 03, and us. Thus the only alterations

involve separators 02 and 04. If 04 nproper(2 ) = 0, then the modification is trivial. Suppose

then that Y4 nproper(o2)*0. In this case the set 04 nproper(o2 ) forms either the initial or the
final segment of the chain proper( 2 ), or both, for, otherwise, its removal from proper( 2 )

would yield an updated (after the rotation) proper(a2) violating Theorem 3.4. Thus the update

is accomplished by (1) splitting proper(a2) into ^2 = a4 nproper(o2 ) and its relative comple-

ment %; (2) splicing Y2 with proper(o4 ) to form the updated proper(o4 ); and (3) setting the

updated proper(q2) equal to yl. Note that the extreme vertices of proper(o4) are obtained in

time 0(1), and the splitting vertices of proper(02) are determined in time O (log n). Since data

structures for proper(o2 ) and proper(o4 ), (ie., the red-black trees associated with lists

strandl (a) and strand2 (a)) are also concatenable queues, the splitting and splicing operations

are executed in time O(logn) as well. The parameters t(o) and b(a) for the resulting separators

are updated in 0 (1) time by means of straightforward rules. 0U

Hereafter, the red-black tree S is assumed to be balanced. The rest of this section is

devoted to the discussion of the algorithms to perform searches, insertions, and deletions. We

L have shown in Section 3.2 that the four operations INSERTCHAIN, REMOVECHAIN, INSERT-

POINT, and REMOVEPOINT are sufficient to generate any planar subdivision. The measures of

time complexity ought to be expressed as functions of the form f(n,k), where n is the current

size of 9t, and k is the size of the chain y to be inserted or deleted.

3.4.2. Query

To perform a point location search for a query point q, we use essentially the same method

as [35). The search consists of tracing a path from the root to a leaf X of. At each internal

node 0 we discriminate q against separator o. Three cases may occur:

(1) q e o: we return the edge of a that contains q and stop;

(2) q is to the left of a: we proceed to the left child of o,
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(a)

121

Figure 3.6 Ilustration of a (left) rotation. The nodes
involved in the update are shaded. (a) Separator tree. (b)
Chains of proper edges.
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(3) q is to the right of a: we proceed to the right child of 0.

Once we reach a leaf X, we know that q belongs to a region of X. Since the regions of X are

sorted from bottom to top, such region is determined by searching in the list regions(y). The

above technique can be viewed as a "horizontal" binary search in the set of separators of 9t*,

followed by a "vertical" binary search in the set of regions of the leaf X.

Let e be the edge of a whose vertical span contains y(q). When e e proper((), the

discrimination of q against a is a conventional search in strand] (a). When e e proper(a) then

we use the pair (t(a),b(a)): for example, when e is above proper(a), if t(a) =left, then q is

discriminated to the right of a, and to its left otherwise. (This is a minor variant of the criterion

adopted in [35]). The case when e is below proper(a) is treated analogously. This simple

analysis confirms that the time spent at each node is O(logn). We have [35]

Theorem 3.7 The time complexity of the query operation is 0 (log2n).

3.4.3. Insertion

We shall first show that the effect of operation INSERTCHAIN (y, V 1,v 2 ,r;r1 ,r 2) on the

order < of the regions of 9t can be expressed as a syntactical transformation between the strings

expressing the order before and after the update. The situation is illustrated in Fig. 3.7.

On the boundary of r there are two distinguished vertices: HIGH (r1 ) and LOW(r 2 ). Note

that HIGH (rj)=HIGH (r) if v 2 is on the right chain of the boundary of r (and similarly

LOW(r 2)=LOW(r) if v, is on the left chain). Thus, in general, HIGH(rl) is on the left chain

of the boundary of r, and LOW(r 2) is on the right chain. Using the string notation introduced in

Section 3.3, let L and R be the strings corresponding to the regions that respectively precede and

follow r in <. Thus, the subdivision 9t* is described by the string LrR.

Let eI be the edge of 91* on the left boundary of r incident on HIGH (r1 ) from below, and

let X be the maximal cluster on the left of e 1. In general, this cluster consists of two portions, Xi

and Z2 (such that X, -X2), where X2 consists exactly of the regions q' of X for which

y(LOW(q))>y(HIGH(r1 )). Thus, we have L=LXV'. We now distinguish three cases and

define substrings X1, X2 , L 1, and L 2 as follows.
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(a) (b)

Figure 3.7 (a) Canonical partition of subdivision 9t* with
reference to region r and vertices v I and v 2 , and (b) the
restructured subdivision after the insertion of chain y
between v1 and V2 . .

(1) X2* 0 . LetX I, X2 =X2 ,L, =L',L2 =L", so thatL =LL,- 2L 2.

(2) X2 =0. Let q be the region preceding r (note q could form a cluster with r). We further

distinguish:

(2.l)y(LOW(q))?y(HIGH(rj)). In this case we let L=L1X 2L 2, where X2 is the maxi-

mal cluster immediately following X.

(2.2) y(LOW (q)) < y(HIGH (r 1 )). In this case we let L=LII--, where X, is the right-

most maximal cluster of L (but not necessarily a maximal cluster in 9*).

The three cases are conveniently summarized by the notation

L =LI .I - -)2L2 .

Analogously, string R can be reformulated as

R =R 1 p,--P2R2

with straightforward meanings of the symbols.
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Thus, in general, for any given region r and choice of v I and v 2 on its boundary, we have

U the following canonical string decomposition of 9*:

L )j - - 2L 2rR 1p, - -P2R2.

The corresponding partition of the subdivision is illustrated in Fig. 3.7(a). Examples of

configurations corresponding to cases (2.1) and (2.2) are shown in Fig. 3.8. Namely, part (a)

shows case (2.1) forL and case (1) for R, part (b) shows case (2.2) for both L and R, and part (c)

shows case (2.2) forL and case (1) for R.

We now investigate the rearrangement of this order caused by the insertion of chain y into

r. Referring to Fig. 3.7(b), it is immediately observed that the order after the update is as fol-

lows:

SL1 < )L <rI <RI <pi < X2 <L 2 <r 2 <P2 <R 2.

To obtain the string description of the updated subdivision we must determine whether any new

channel has been created. Any such channel can only arise in correspondence with a new adja-

* cency caused by the update, specifically for the following pairs: ().,rl), (pj)2), and (r2 ,P2 ).

The channel from X, to r, exists only if y(HIGH(XL))5y(LOW(r 1 )), and analogously for the

channel from r 2 to P2. Instead, since y(HIGH(pl)) <y(LOW(X)), the cluster Pi-X2 always

exists. Therefore, the order caused by the insertion of y is represented by the string

L1 ). 1- -rIRp-. 2L 2r 2 - -p2R2.

(In purely syntactic terms, this transformation corresponds to rewriting r as r 2-r and then

exchanging substrings rr IP, and 2 L 2 r 2 .) This is summarized as follows:

Theorem 3.8 Let L 1 )L"-%L 2rR1 p1 - -p2R2 be the string description of the order of 9*, where

Ll, r, and R 2 are nonempty. After operation INSERTCHAIN (Yv 1,v 2 ,r;rj,r2 ) the new order is

described by

1 )1 - -r1 R I pl -) 2L2r 2 - -p2R 2.

The algorithm for the INSERTCHAIN (yv,v 2 ,r;r1 ,r 2 ) operation implements the syntacti-

cal transformation of the string description by decomposing the subdivision 9t into its com-

ponents L1, X , X, L 2, r, R1 , Pl, P2, and R 2 , which are subsequently reassembled according to
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Figure 3.8 Special cases of the structural partition of Fig.
3.7. (a) Case (2. 1) for L and case (1) for R. (b) Case (2.2)
for both L and R. (c) Case (2.2) for L and case (1) for R.
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the new order given by Theorem 3.8.

To formally describe the algorithm, we denote by 9t(S) the partial subdivision associated

with a string S of consecutive regions of 9t. We can represent 9Z(S) with the same data structure

described in Section 3.4.1, and we denote with 3 (S) the augmented separator-tree for S. Partial

subdivisions can be cut and merged with the same rules as for the decomposition and concatena-

tion of the corresponding strings.

Let 94(S), 9t(S 2), and 9t(S) be partial subdivisions such that S=S 1 S 2 . We show in the

following how to merge .3 (S1) and - (S2) into $ (S), and how to cut S (S) to produce S (S1) and

-(S 2 ). The merge operation needs also the separator a at the boundary between 91(S1) and

9t(S 2 ), represented by its primary and secondary strands. The cut operation returns the separator

a. These operations can be implemented by means of the following six primitives:
r"

Procedure MERGE1(S 1 ,a,S2;S)

[It merges partial subdivisions 9(S 1) and 9t(S 2 ), with S 1-- S 2; a is the separator between

9t(S 1) and 9t(S 2). ]

(1) Construct a separator-tree 3(S) for 91(S), by placing a at the root, and making 3(S 1) and

3(S2) the left and right subtrees of a, respectively.

[ ( (S) is a legal separator-tree for 9t(S), but might be unbalanced. ]
! (2) Rebalance S (S) by means of rotations.

Procedure MERGE2(X ,ac,X2;X)

[ It merges partial subdivisions 9 t(XI) and 9t(X2) such that XiT 2 into 9t(X), where X= X--z2,

and a is the channel between yi and X2. J

(1) Separate the two strands of a, and make the secondary strand become a new primary

strand.

(2) Splice regions(zX) and regions(Q2) to form regions(Q).
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Lemma 3.7 Operations MERGER(S1,o, S 2 ;S) and MERGE2(l,atX2 ;X) have time complexity

0 (log2 n) and 0 (log n), respectively.

Proof: The time bound for operation MERGE2 follows immediately from the properties of con-

catenable queues. With regard to MERGE), Step 1 consists of forming Z (S) by joining the pri-

mary structures of 3 (S1) and 3 (S2) through node a, which takes 0(1) time. Since we use red-

black trees, we can rebalance - (S) with 0(logn) rotations [55, pp. 52-53]. By Lemma 3.6,

each such rotation takes 0 (log n) time, so that the total time complexity is 0 (log2 n). 0

Procedure CUT1 (S,XI,X2;S1,OS2)

[It cuts partial subdivision 9t(S) into 9 t(SI) with rightmost cluster X, and 9t(S 2 ) with leftmost

cluster X2, such that X,-+X2, and also returns the separator a between 9t(S 1) and 9t(S2).]

(1) Find the node a of 3 (S) that is the lowest common ancestor of leaves X, and X2.

(2) Perform a sequence of rotations to bring a to the root of S (S), where after each rotation we

rebalance the subtree of a involved in the rotation, namely, the left subtree for a left rota-

tion and the ight subtree for a right rotation (see Fig. 3.9).

(3) Set Z (SI) as the left subtree of a and 5 (S2) as the right subtree of a. Return the chain

proper(o).

Procedure CUT2 (X;XI,cfX2)

[It cuts partial subdivision 9t(X) into 9 t(Xl) and 9t(X2), where X=Xi-X2 and a is the channel

between X, and X2. ]

(1) Join the two previously separated strands of a, so that the rightmost one becomes the

secondary strand of the other.

(2) Split regions(1) into regions(XI) and regions(X2).

Lemma 3.8 Operations CUT] (SXI,X2;SI,,S2) and CUT2 (X;XI, X,2) have time complexity

0(log2n) and 0 (log n), respectively.
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Proof: The time bound for operation CU72 is immediate. With regard to operation CUT1, Step

1 takes 0 (height(S (S))) = O(log n) time. In Step 2, we perform no more than height(S (S))

rotations to bring a to the root. After each such rotation, we have to rebalance a subtree 3'

whose left and right subtrees are already balanced, so that the number of rotations required for

rebalancing is proportional to the difference of height of the subtrees of 3'. Such differences

form a sequence whose sum is proportional to height(3 (S)) [55, p. 53]. To see this, consider the

path of I (S) from node a to the root, and let X 1, "'" ,Xp be the sequence of left subtrees of the

nodes of this path whose right child also belongs to the path, in bottom-to-top order. Also,

define X'j =X 1 . The i-th left-rotation performed in bringing a to the root splices trees Xi +1 and

X'I to form a new tree, which after rebalancing will be denoted X'i + . We recall that each node

g of a red-black tree is associated with an integer rank(A) such that

rank(g) < height (g) : 2 rank (g).

Also, the rank of a subtree is equal to the rank of its root. From the theory of red-black trees [55,

p. 53] we have

(1) rank(Xi) rank(Xi+ 1 );

(2) rank(Xi) :rank(X'i)<rank (XI)+ 1;

(3) the number tj of rotations needed to obtain the balanced tree X'i +1 is at most

ti <e I rank(Xi +1) -rank(X'i) l. -

The total number t of rebalancing rotations is
p-i p-i

t= ,i I , rank (Xi + I)-rank(X'i) I.

i=1 i=I

Now, if rank(X'i) = rank(Xi) or rank(Xi) < rank(Xi + 1 ), we have

Irank(X+ 1)-rank(X'i)I =rank(Xi+ )-rank(X'i) < rank (Xi+1)-rank(Xi).

Otherwise (i.e., rank(X'.) = rank(Xi) + 1 and rank(Xi) = rank(Xi + 1)), we have

Irank(Xj+)-rank(X'i)I = Irank(Xi+ )-rank(Xj)-l I =1.

Hence, in both cases the following inequality holds:
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Irank(Xi +1) -rank(X'j) I 5rank(X+ 1)-rank(Xi)+ 1,

from which we obtain

p-it<_ y (rank(Xi+,)-rank(Xi)+ l)--rank(Xp)+(p-1)<2heigl (S(S))-O(ogn).

By Lemma 3.6, each rotation takes 0 (log n) time, so that the total time complexity is 0 (log2 n).

0

Procedure FINDLEFT (e ;X)

lit finds the cluster X to the left of edge e. If e is part of a channel, then X is the cluster that con-

tains such a channel.]

(1) Perform a point location search for (any point of) edge e. The search will stop at a node a

of S that stores (a representative of) e.

(2) If e is a double edge of a [ i.e., e does not belong to a channel ], resume the point location

search in the left subtree of a and return the leaf X where the search terminates. [ This

- Icorresponds to searching for a point p - immediately to the left of edge e. ]

(3) Otherwise [ i.e., e is a single edge of F and belongs to a channel ] resume the point location

search in both subtrees of a. [ This corresponds to searching for points p - and p + immedi-

*i ately to the left and right of edge e, respectively. I One of the two searches, say the left one,

will terminate in a leaf, while the other search, say the right one, will stop at a node a' that

stores the other representative of e. [ Recall that the two nodes storing e are on the path

from leaf X to the root of 3. I We resume the search in the left subtree of e and return the

leaf X where the search terminates. [ The case where the right search out of a terminates in

a leaf is analogous. ]

Procedure FINDRIGHT (e ;X)

[It finds the cluster X to the right of edge e. If e is part of a channel, then X is the cluster that

contains such a channel ]

[Analogous to FINDLEFT]
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Lemma 3.9 Operations FJNDLEFT(e;X) and FINDRIGHT(e;X) have each time complexity

0 (log2 n).

Proof: Since each edge has two representatives, there are at most two nodes of S where we

proceed to both children. Hence, we visit a total of 0 (log n) nodes, spending 0 (log n) time at

each node. 0

The complete algorithm for operation INSERTCHAIN (y,v 1,v 2 ,r;rj ,r 2) is as follows:

Algorithm INSERTCHAIN (Y,v1,v2 ,r;rj,r 2)

(1) Find regions q and s immediately preceding and following r, respectively; also, find clus-

ters X, and XR by means of FINDLEFT(e1 ;Xt) and FJNDRIGHT(e2 ;XR). From these

obtain X1, X2, pl, and P2.

(2) Perform a sequence of CUT) and CUT operations to decompose 91=9t(L1 X1.--

X2L 2 rR 1Pl--p2R2 ) into %(L1), 1(X.I), 9t( 2 ), 9(L 2 ), 91(r), 91(R1 ), 9t(pr), 9t(P2), and

91(R 2). The primary and secondary strands returned by each such operation, which form

the boundaries of the above partial subdivisions, are collected into a list p.

(3) Construct the primary and secondary strands of chain y and add them to ga.

(4) Destroy 91(r) and create 91(r 1) and 91(r2 ).

(5) Test for channels Xj-rl and r2 -P 2 , and perform a sequence of MERGE) and MERGE2

operations to construct the updated subdivision 91(LILX--r 1 Rlpl-XL2L 2 r 2 --p2R 2). The

separators and channels needed to perform each such merge are obtained by splitting and

splicing the appropriate strands of p.

Theorem 3.9 The time complexity of operation INSERTCHAIN (yv l,v 2 ,r;r 1 ,r2 ), where y con-

sists of k edges, is 0 (log2n +k).

Proof: In Step 1, finding q and s takes 0 (log n) time. In fact, q is either in the cluster of r or in

the cluster immediately preceding the one of r, and analogously for s. By Lemma 3.9, finding

XL and XJR takes 0 (log2 n) time. The remaining computation of ) 1, , Pl, and P2 can be done

in 0(logn) time. By Lemma 3.8, Step 2 takes O(log 2n) time. Notice that the list o has 0(1)
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elements. Step 3 can be clearly performed in time 0(k). Step 4 takes 0(1) time since r, rI and

ik r 2 are single-region structures. In Step 5, testing for channels X.- -r1 and r 2 - -P2 takes 0 (1)

time. Since the list o has 0(1) elements, we can construct in 0 (log n) time the separators and

channels needed for each merge operation of Step 5. By Lemma 3.7 the total time for such

merges is 0 (log2n). 0

With regard to the INSERTPOINT operation, we locate the edge e in the dictionary, and

replace each of the two representatives of e in the data structure with the chain (e 1 ,v, e 2). This

corresponds to performing two insertions into sorted lis:,% so that we have

Theorem 3.10 The time complexity of operation INSERTPOINT (v,e;e 1 ,e 2) is 0(log n).

r- A similar argument shows that

Theorem 3.11 The time complexity of operation MOVEPOINT (v;x,y) is 0(logn).

3.4.4. Deletion

The transformations involved in a REMOVECHAIN operation are exactly the reverse of the

ones for the INSERTCHAIN operation. We observe that all the updates performed in the latter

case are totally reversible, which establishes

Theorem 3.12 The time complexity of operation REMOVECHAIN (rr), where - consists of k

edges, is O(log2 n +k).

The same situation arises with respect to the INSERTPOINT and REMOVEPOINT opera-

tions, so that we have

Theorem 3.13 The time complexity of operation REMOVEPOINT (v;e) is O(log n).

Theorem 3.1 stated in Section 3.1 results from the combination of the above Theorems 3.6,

3.7, 3.9, 3.10, 3.12, and 3.13.
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CHAPTER 4

DYNAMIC POINT LOCATION: TRAPEZOID METHOD

4.1. Introduction

In this chapter we present a dynamic point location technique with optimal query time.

This technique considers convex subdivisions whose vertices lie on a fixed set of N horizontal

lines. The supported update operations are insertion/deletion of vertices and edges, and (hor-

izontal) translation of vertices. The method achieves query time 0(logn+logN), space

0 (n log N), and insertion/deletion time 0 (log n log N). Hence, whenever N = 0 (n), the query

time is 0 (log n), which is optimal. In addition to its good theoretical performance, this tech-

nique is also easy to implement and very efficient in practice. It is based on the trapezoid

method of Preparata [46], which has been experimentally shown to be the fastest point location

method among those with asymptotically optimal query time [12]. It is easily realized that in

many significant applications the most frequent operation is the point location query, while

updates are more rarely executed. Hence, this technique provides the most efficient solution for

such applications.

The rest of the chapter is subdivided into seven sections. In Section 4.2 we formally state

the problem. Section 4.3 describes the geometric foundations of the technique. Sections 4.4 and

4.5 present the dynamic data structure and the query algorithm. The update algorithms are dis-

cussed in Sections 4.6 and 4.7. Finally, Section 4.8 discusses extensions of the technique and

directions of further research.

4.2. Preliminaries

Let L = (10,11, "'" ,lV) be a set of horizontal lines, in this order from bottom to top. The

lines of L partition the plane into horizontal strips, called elementary slabs, two of which are (the

bottom and top) half-planes. A slab is either an elementary slab or the union of two contiguous

slabs. We consider a convex subdivision 9t whose n vertices are on the lines of L (see Fig. 4.1).
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This implies that all finite edges of 9t occur in the plane strip between 10 and lN, and that all

I infinite edges are horizontal rays.

The following update operations on 9t are defined:

INSERTPOINT (v,e;e 1,e 2):

Split the edge e=(u,w) into two edges eI =(u,v) and e 2 =(v,w), by inserting vertex v,

which lies on some line of L.

REMOVEPOINT (v,e I,e 2 ;e):

Let v be a vertex of degree 2 whose incident edges, eI =(u,v) and e2 =(v,w), are on the

same straight line. Remove v and replace eI and e 2 with edge e = (u,w).

INSERTSEGMENT (e,v 1 ,v 2 ,r;r 1,r 2 ):

r Add the edge e = (v 1,v 2 ), with y(v )<y(v 2 ), to 9t inside region r of 9t, which is decom-

posed into regions r1 and r 2 , with r1 and r2 , respectively, to the left and to the right of e,

directed from v I to V2.

14

1 . 13 'i

10

Figure 4.1 Example of convex subdivision with vertices
on the set L of horizontal lines.
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REMOVESEGMENT (e,v 1 ,v 2 ,r 1 ,r 2 ;r):

Remove edge e and merge the regions r, and r 2 formerly on the two sides of e into region

r. [ The operation is allowed only if the subdivision 9V so obtained is convex.]

MOVEPOINT (v;x):

Horizontally translate a vertex v from its present location to abscissa x. [ The operation is

allowed only if the subdivision 91' so obtained is convex and topologically equivalent to

9t.]

The following theorem demonstrates the adequacy of the above repertory:

Theorem 4.1 An arbitrary convex subdivision 9t with n vertices can be assembled starting from

the empty subdivision, and disassembled to obtain the empty subdivision, by a sequence of 0 (n)

operations from the above repertory.

Proof: It suffices to constructively demonstrate the assembly of %, since its disassembly is

obtainable by replacing each operation with its inverse and by reversing their order. First, we

recall the definition of the acyclic relation "-c" between the regions of 9t (see Section 3.3 of 7

Chapter 3). Given rI and r2 in 9t, r1 is left-adjacent to r 2 (r I-cr2) if their boundaries share an

edge e, and r1 and r 2 are respectively to the left and to the right of e. (If rI and r2 share a hor-

izontal edge, then r I 4cr 2 if r1 is below e.) Consider an order (r1 ,r 2 , ...,rf) of the regions of

9t which is consistent with "-c". We build 9t by adding its regions one by one, according to the -

chosen order. At the generic step of the construction, after adding region ri we call 9ti the

resulting subdivision. (Obviously, 9f= 9t.) In 9tj there is a monotone polygonal line qj, which

forms the boundary of the set of regions [r1 ,r 2 , ""- ,ri) (refer to Fig. 4.2). Consider the (exter-

nal) angles to the right of a( at each nonextreme vertex of ai: each angle > x is bisected by a

horizontal ray to ensure the property of convexity for 9ti. Consider now region ri+ 1: obviously,

the left chain of ri+ 1 is already present in 9ti, and let the right chain of ri + I be v' 1 , • " ,v',. By

means of INSERTSEGMENT we insert the edge e = (LOW (ri + ),HIGH (ri + i)). (This operation

is performed as many times as there are regions.) Next, with the sequence INSERTPOINT,

-*INSERTSEGMENT, MOVEPOINT we insert vertex v' 2 and edge (v',v'2) into their final posi-

tion, and partition the region to the right by a horizontal ray to preserve convexity. This process -
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is performed for v' 3 , ... ,v',- 1. (This sequence of operations is performed at most once for

I each vertex of 9t.) Finally, by REMOVESEGMENT we remove any horizontal ray originating at

V1 and v', if the corresponding external angles have become <5.t. (This operation is pcrformed

at most twice per region.) The resulting subdivision is 9t i + I and exhibits the same invariant as

regards the region to the right of ri.+ 1. The comments about the frequency of each executed

operation complete the proof. 0

Let r be a convex polygon. Polygon r is said to be I-supported if it has an edge e such that

any horizontal line intersecting r intersects also e, i.e., r contains the edge (LOW (r),HIGH (r))

(see Fig. 4.3(a)). Polygon r is said 2-supported if it has two edges, e1 and e2 , such that any hor-

izontal line intersecting r intersects at least one of eI and e2 (see Fig. 4.3(b)). (Notice that a I-

r supported polygon is also 2-supported.) t. convex subdivision is said to be 1-supported (respec-

tively 2-supported) if all its regions are 1-supported (respectively 2-supported).

An important property of i-supportedness (i = 1,2) is expressed by the following straightfor-

ward lemma:

Lemma 4.1 Let convex polygon r be cut by a horizontal line into two convex polygons r 1 and

r 2 . We have:

L (i) If r is 1-supported, then both r 1 and r2 are 1-supported.

(ii) If r is 2-supported, then at least one of r1 and r 2 is 1-supported.

In the description of the data structure for dynamic point location we will assume that the

subdivision 9t is 2-supported. As shown in the following, this is not restrictive. Let 9t* be the

subdivision obtained from 91 by adding to each region r which is not 1-supported the edge from

LOW (r) to HIGH (r). (Notice that 91 may have degenerate regions of measure zero.) Clearly

91* is 1-supported. The answer to a point location query in 91* can be immediately converted to

an answer in 91. Regarding updates, we have

)3I
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(a)
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13

r2  r r

10

(b)

Figure 4.2 Example for the proof of Theorem 4. 1. (a)
Subdivision 9t7. (b) Subdivision 9tg.
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Lemma 4.2 For each update operation performed on 9t there exists a sequence of al most four

N operations which update 9* so that after each intermediate operation the resulting subdivision is

2-supported (possibly 1-supported).

Proof: Consider operation INSERTSEGMENT(e,v1 ,v 2 ,r;r,r 2) performed on 91. The

sequence of operations in 9* is as follows (see Fig. 4.4):

(1) insert edges 1 =(LOW (r1 ),HIGH (r1 ));

(2) insert edge s 2 = (LOW (r 2),HIGH (r2 ));

(3) remove edges =(LOW (r),HIGH (r)), unless s =sl or s =s2;

(4) insert edge e.

HIGH (r) HIGH (r)

! 
e2

. C

LOW (r) LOW (r)

(a) (b)

Figure 4.3 (a) A 1-supported polygon. (b) A 2-supported
polygon.
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(We assume that an insertion is not performed if the edge to be inserted already exists.) Similar

arguments hold for operations REMOVESEGMENT.

Regarding operation INSERTPOINT (v.e:e 1 ,e 2). let r1 and r 2 be the regions to the left and

right of r, respectively. The sequence of operations in 9" is as follows:

(1) insert vertex v;

(2) insert edge s, = (LOW (rl ),HIGH (r1 ));

(3) insert edge s 2 =(LOW (r 2),HIGH (r 2)).

Again, the case of operation REMOVEPOINT is similar.

Finally, operation MOVEPOINT does not affect the supportedness of any region of 9t, so

that no further operation is required in 9t*. 0

4.3. Trapezoids

Throughout this section we denote by 9t a 2-supported convex subdivision whose n vertices

are on the lines of L. We show that the trapezoid method for point location [46) can be modified

to perform efficiently updates on 9t.

The trapezoid method is based on a recursive decomposition of the subdivision 9t into com-

ponents, called trapezoids. A trapezoid c is a convex subdivision whose external boundary is a

quadrilateral with two (not necessarily bounded) horizontal sides, which belong to the lines of L.

We denote the four sides of r by LEFT (r), RIGHT (@), BOT (r), and TOP (T). Let BOT (r) be on

line li, and TOP ('c) on 1j. The median line of t, denoted MEDIAN (,r), is the line lk with

k = [(i +j)/2J. The subdvision 91 is the trapezoid with BOT (9t)=0, TOP (9t)=IN, and having

LEFT (t) and RIGHT (,r) at infinity.

A spanning edge of trapezoid -c is an edge of T with endpoints on the top and bottom sides

of 'c. A spanning edge s partitions trapezoid t into two trapezoids, denoted -rL and rR, with

s =RIGHT (trL) =LEFT (@cR). This is called a vertical cut (see Fig. 4.5(a)). If trapezoid 'c does

not have spanning edges, we decompose it by means of a horizontal line through its median line,

and obtain trapezoids rB and cT, with MEDIAN (r) =TOP (rB) = BOT (,T). This is called a hor-

izontal cut (see Fig. 4.5(b)). A trapezoid can always be decomposed unless it is empty. We
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HIGH (r) HIGH (r) = HIGH (ri)

r~~~~~~ __ _ _ _ _ __ _ _ _ _

LOW (r) LOW (r) LOW (r2)

(a)

S SI S

r *S2

S, e S1

S2  S

(b)

Figure 4.4 Example for the proof of Lemma 4.2. (a)
* Operation INSERTSEGMENT on 9t. (b) Sequence of

operations on 9t*.
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assume that a vertical cut takes precedence over a horizontal cut, so that the decomposition pro-

cess is uniquely determined to within the specification of the sequence of consecutive vertical

cuts of the same trapezoid.

The above decomposition process can be conveniently represented by means of a string

notation. Namely, a vertical cut can be represented by the transformation r-"nL s R, where s is

the spanning edge; and a horizontal cut by the transformation I-(r8 )l (rT), where 1 is the

median line of r. Finally, an empty trapezoid r is eliminated using the transformation r

where e is the null string. Hence, the recursive decomposition of a trapezoid r can be viewed as

a sequence of rewritings using one of the above rules. In this framework, trapezoids correspond

to nonterminal symbols (variables), while spanning edges and lines correspond to terminal sym-

bols. The initial string is the nonterminal symbol 'c. The final string is a sequence of spanning

(a)

... .- -- - MEDIAN (r)

(b)

Figure 4.5 (a) Example of vertical cut. (b) Example of
horizontal cut.
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edges, lines, and parentheses. For example, the recursive decomposition of the trapezoid shown

I in Fig. 4.6 is described by the string

((eI e3) '1 (e2 e7)es e9 ) 12 (e2 (e 4 ) 13 (e5 e6)elo e 11

Notice that the parentheses have been introduced in the horizontal decomposition to eliminate

ambiguities in the parsing of such strings.

The canonical decomposition of a trapezoid x with spanning edges is defined by (see Fig.

4.7):

where

(i) eachri, i = 1, ... ,k - 1, is a nonempty trapezoid without spanning edges;

(//) each of o and c either is empty or is a nonempty trapezoid without spanning edges; and

(iii) each aj, j= 1, .-. ,k, is a maximal sequence of spanning edges that delimit empty tra-

pezoids.

I

13 ellm

12 - - - --- e4~~im

1 1 mm mmmmm mmmm7

e e8  e9

Figure 4.6 Recursive decomposition of a trapezoid.
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Figure 4.7 Canonical decomposition of a trapezoid.

4.4. Data Structure

The data structure for point location makes use of the so-called biased binary tree [2],

which is a dynamic binary search tree that represents a sorted list of weighted items.

Specifically, the i-th item in the sorted list, with weight wi, is represented by the i-th leaf of the
A

tree. Let w = ,w be the total weight of the items in the tree. Some important properties of
i=1

biased binary trees, which are relevant to this work, are listed below:

(1) The depth of the i-th leaf is at most log (w/wj) + 2.

(2) Dynamic operations such as insertion/deletion of an item, change of weight of an item, and

split/splice of biased trees, can be performed in time 0 (log w). (For the splice operation, w

is the total weight of the trees to be spliced).

The point location data structure consists of a main component and of an auxiliary com-

ponent. The main component is a binary tree Z (9t), called trapezoid tree, which represents the

recursive decomposition of the subdivision 9R.

The nodes of the trapezoid tree Z (9t) are of three types (see Fig. 4.8):
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(a) (b) (c)

Figure 4.8 Nodes of a trapezoid tree: (a) V-node; (b) 0-
node; (c) e-node.

(1) V-node: each such node is associated with a nonempty trapezoid r which is partitioned by

a horizontal cut; it stores the line MEDIAN (r).

(2) 0-node: each such node is associated with a nonempty trapezoid T which is partitioned by

vertical cuts; it stores a maximal sequence a of spanning edges in the canonical decomposi-

tion of T, represented by a balanced tree.

* (3) e-node: each such node is associated with an empty trapezoid, and is a leaf of the tra-

pezoid tree.

In addition, each node . stores an integer weight(g), which denotes the number of vertices in the

interior of the tiapezoid associated with g.

Each node of the trapezoid tree is uniquely associated with a trapezoid, so that we will

sometimes use the same name for a node of the tree and for the associated trapezoid.

The trapezoid tree 3 (,r) for a nonempty trapezoid 'r is recursively defined as follows (see

Fig. 4.9):

(1) If T has no spanning edges, the root of - (,r) is a V-node, and the left and right subtrees of

(,c) are trapezoid trees for rB and rT, respectively.
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Figure 4.9 Trapezoid tree for the trapezoid of Fig. 4.7.

(2) Otherwise (r has spanning edges), we consider the canonical decomposition of T,

To a1l72 ... Yk~k, and define T(r) as a biased binary tree for the items To, "". ,ck. Tree

T(c) is called the decomposition tree of t. The i-th leaf of T() is a V-node for trapezoid ci.

For the special case when i = 0 or i = k and ri is empty, leaf i is a E-node, and has nominal

unit weight. The i-th internal node of T, denoted gi, stores the sequence ai of spanning

edges, and is associated with the trapezoid formed by the union of the trapezoids associated

with the leaves of the subtree of T(r) rooted at gi. Each node of T(C) is also equipped with

pointers pred and succ, which form a doubly-linked list of the nodes of T(@) in their left-to-

right order. Finally, the trapezoid tree S (t) is obtained by replacing each leaf i of T()

with the trapezoid tree 3 (ri).
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It is interesting to observe that each edge e of the subdivision 9t may be stored in the

3 sequences of spanning edges of several O-nodes of ree S (9'). Each such representative is

called a fragment of edge e. The decomposition of e into fragments is performed according to

the well-known segment-tree scheme [47, pp. 13-15], so that the number of fragments of each

edge is at most 2 logN- 1.

Theorem 4.2 The space requirement of the trapezoid tree (91) is 0 (n log N).

Proof: Let the order of a V-node g be the number of V-nodes on the path from g to the root of

(9t), including g.. Because of the median line decomposition rule, the order of g. is at most

logN. Also, for any p <logN, there are at most n nodes of order p because each such node

corresponds to a trapezoid with at least one vertex. Hence, the total number of V-nodes in 3 (9)

is at most n log N. Regarding O-nodes, we observe that each edge is decomposed according to

the well-known segment-tree scheme, so that the total space requirement for the O-nodes and

their sequences of spanning edges is 0 (n log N). Finally, we can charge at most two e-nodes to

each V-node, so that the total space for the trapezoid tree (9t) is 0 (n log N). 0

Theorem 4.3 The depth of the trapezoid tree 3 (9) is 0 (log n + log N).

Proof: Without significant loss of generality, assume that N is a power of 2. Let height(r) be

the number of elementary slabs spanned by a trapezoid r. Clearly, height() <N. We show that

for a V-node of 3(9t) with associated trapezoid r, the depth of 3 (t) is at most

log weight(c) + 3 log height(c) + 1. (For simplicity of notation, we assume that log 0 = 1.) The

proof is by induction on height (t). The base of the induction, height(t) = 2, is immediate, since

the left and right subtrees of 3 (@) consist each of a O-node and two e-nodes. For the inductive

step, define w =weight(i) and h =height(). Consider the deeper of the two subtrees of c, say,

the one associated with trapezoid rR. Let ;i be a leaf of the decomposition tree T(rB), and define

wi = weight(;i) and hi = height(i). Since T(tB) is a biased binary tree, leaf ; has depth bounded

by log (wiw,) + 2. By the inductive hypothesis, the depth of the trapezoid wree (ti) is at most

log wi + 3 log hi + 1. Hence, the total depth of the trapezoid tree 3 (@) is at most
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(log (w/wi) + 2) + I + (log wi + 3 log hi + 1).

Since hi = h12, this is exactly log w + 3 log h + 1. 0

The auxiliary component of the data structure, called dictionary, contains a record for each

vertex, region, and edge of 9t. The record for a vertex v stores the name of v and its coordinates.

The record for a region r stores the name of r, pointers to the records of vertices LOW (r) and

HIGH (r), and pointers to two balanced search trees, Ichain(r) and rchain(r), respectively,

representing the edges of the left and fight chain of r in bottom-to-top order. The record for an

edge e stores the name of e, pointers to the records of the endpoints of e, denoted LOW (e) and

HIGH (e), and pointers Iface(e) and rface(e) to the representatives of e in the trees rchain(rI)

and lchain(r2) such that r, and r 2 are the regions on the left and right sides of e, respectively.

Clearly, the dictionary takes O(n) space. The dynamic maintenance of the dictionary in the

various update operations can be easily performed in O (log n) time, and will not be further

described.

4.5. Query

The query algorithm is essentially the same as in the static case [46]. It consists of tracing a

path in S (9 ). The actions taken at the current node g are as follows:

(1) If g is a e-node, we stop. -

(2) If g is a V-node, we discriminate the query point q with respect to the median line

MEDIAN (T) of the trapezoid 'T associated with p.. We proceed to the left or right child of g

depending upon whether q is below or above MEDIAN (@). (If q is on MEDIAN (T) we

proceed to the left child.)

(3) If . is a O-node, we discriminate q with respect to the sequence of spanning edges associ-

ated with g., a(g) = s 1 , " ,sp. If q lies to the left of edge s 1 , we set sR := s I and proceed to

the left child of . If q lies to the right of s,, we set sL := sp and proceed to the right child

of p. If q lies between two edges of a(j), say si and si+1, we set sL :=si and sR :=si+1, and

stop.
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The region r reported is the one which lies on the right side of edge sL and on the left side of

3 edge SR.

The time spent is 0 (1) for the intermediate nodes on the search path, and 0 (log n) for the

last node. The final computation of r from sL and SR can be done by accessing the representa-

tives of sL and sR in the trees Ichain(r) and rchain(r) pointed by rface(sL) and #face(sR), and

walking up to the root of such trees, which takes 0(logn) time. Since the height of tree 3 (9t) is

logarithmic, we conclude

Theorem 4.4 The complexity of a point location query is 0 (log n + log N).

4.6. Insertion of Edges

First, we consider operation INSERTSEGMENT (e,v 1 ,v 2 ,r;rj,r2 ). The insertion algorithm

is described by means of a recursive procedure, whose actions, depending on the type of the

current node g, are as follows.

1. If p is a 0-node associated with the string a) = s I ... s,,, we locate e in a(p.).

IF, LI If e is to the left of s 1 , we recursively call the procedure on the left child of g.

1.2 If e is to the right of s,, we recursively call the procedure on the right child of p.

1.3 Otherwise, e lies between two edges of a(p.), say si and si + 1 . In this case, we insert e

into a() between si and si + 1, corresponding to the string transformation

s, s"~ , is,~ "'$-+$I",' sies$i+l " '$..

Note that this case can only occur when e spans the slab of a(pi), for, in the interior of the

- corresponding region of the plane, there are no vertices of 9t.

2. If g is a e-node, we know that it is either the leftmost or rightmost leaf of a decomposi-

tion tree. In the former case, edge e is added to the left of the sequence of spanning edges of the

0-node next(g) immediately following p. In the latter case, edge e is added to the right of the

sequence of spanning edges of the 0-node pred(ji) immediately preceding p.

3. If g is a V-node associated with trapezoid T, we determine first whether e spans r or not.
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3.1 If e does not span r, then if LOW (e) is below MEDIAN (@) we recursively call the pro-

cedure on the left child of g, and if HIGH (e) is above MEDIAN ('C) we recursively call the pro-

cedure on the right child of g.. (Note: here is where the edge may be subjected to the segment-

tree fragmentation.)

3.2 If e spans c, we determine the leftmost and rightmost regions of r, i.e., the region rL to

the right of edge LEFT (T) and the region rR to the left of RIGHT (r). Such regions can be com-

puted by observing that LEFT (T) is the last spanning edge in the sequence a(pred(±)), and

RIGHT (,r) is the first spanning edge in the sequence o(next(g)). We have three further sub-

cases:

3.2.1 Ifr=rL, i.e., edge e is to the left of each vertex of t, then edge e is added to the right

of the sequence of spanning edges of the O-node pred(g) immediately preceding 14 and no

further action is required. (If pred() =nil, a new O-node and a new e-node are created, and the

decomposition tree containing leaf g is rebalanced.) This case corresponds to the syntactic

transformation r-e T.

3.2.2 If r =rR, i.e., e is to the right of each vertex of r, then edge e is added to the left of the

sequence of spanning edges of the O-node next(p.) immediately following g, and no further

action is required. (If next(t) = nil, a new O-node and a new e-node are created, and the decom-

position tree containing leaf p. is rebalanced.) This case corresponds to the syntactic transforma-

tion r-n e, and is symmetric to case 3.2.1.

3.2.3 If rrL and r*rR, we have that e lies inside T, which will cause a more substantial

update of the data structure (see Fig. 4.10). In fact, while r was formerly horizontally decom-

posed, it has now to be vertically decomposed by means of a vertical cut along edge e. First, we

call recursively the procedure on both the left and right children of g.. At this point, both tra-

pezoids TB and tT have a vertical cut along edge e, corresponding to the string

(C11 cll e0 12r 12) 1 (T21 y2l ea22%).

To comply with the rule that vertical cuts take precedence over horizontal cuts, we have to res-

tructure the tree according to the string
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(a) (b)

'T11 T12 '71 22

Figure 4.10 Update of the data structure in Case 3.2.3 of
1. INS ER TSEGMENT. (a,c) Prelimninary~ restructuring (edge e

is inserted in both children of g.). (b,d) Final restructuring.
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This is done as follows:

(1) Let VL and P.R be the left and right child of g., respectively. Find node . of T(J L) associ-

ated with the sequence a, =aea12. Similarly, find node g.2 of T(P.R) associated with the

sequence 02 2- 2 1e Ca2 2 . m

(2) Split T(LL) and T(P.R) at nodes g, and P.2, respectively. This yields trees 3 11, 3 12, 3 21,

and 322.

(3) Split the sequences a(Pj) and a(P.2) at edge e. This yields the sequences a11 , a12 , a 2 1, and

a 22 .

(4) If a11 *0, create a 0-node iI for it, and add g, I and a c-node to the right of 311. If

a21 *0, create a 0-node .21 for it, and add P.21 and a e-node to the right of 5 21- If 012 *0,

create a 0-node t.12 for it, and add P.12 and a e-node to the left of S 12. If a22 s, create a

0-node g.22 for it, and add g22 and a e-node to the left of 3 22.

(5) Create a V-node v1 (associated with the portion of T to the left of e), with left subtree 3 11

and right subtree 3 21.

(6) Create a V-node v2 (associated with the portion of T to the right of e), with left subtree 3 12

and right subtree 3 22.

(7) Replace P. with a 0-node v having a(v) = e, left child v1 , and right child v2 . Finally, rebal-

ance the decomposition tree containing node v as a leaf.

This completes the description of the algorithm for operation INSERTSEGMENT.

We now analyze the time complexity of operation INSERTSEGMENT. Let r* be the inter-

section of region r and the horizontal slab spanned by segment e (see Fig. 4.11). Notice that,

since r is 2-supported, so is r* . The insertion of e into the trapezoid tree can be viewed as a

visit of a subgraph of 3 (9t) (see Fig. 4.12). Specifically, this subgraph consists of an initial path

originating at the root and consisting of 0-nodes such that e is always external to the sequence of

spanning edges (Case 1.1 or 1.2), and of V-nodes such that e never crosses the median of the

corresponding slab (Case 3.1). For either type of node, 0(1) time is spent at each node. The

visit of this initial path terminates at a V-node (referred to as thefork), where, for the first time, e
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crosses the median.

At the fork, e is passed on to both children, i.e., the visit continues with two distinct paths,

called the left spine and right spine. Let us consider the left spine (the right spine is similarly

analyzed). It is easily realized that this path contains a set of distinguished V-nodes such that,

for trapezoid t associated with any of them, y(TOP (,r)) 5y(HIGH (e)) and

y(BOT (@)) <y(LOW (e))<5y(MEDIAN (,c)). This implies that e spans the trapezoid T associ-

ated with the right subtree of the distinguished V-node T. The decomposition tree T(,tT) is called

an allocation subtree for edge e. The slab spanned by the roots of all allocation subtrees of e

form a partition of r* into a set of convex polygons, of which it is easily realized that at most

one is 2-supported while all the others are 1-supported (see Fig. 4.11).

Each distinguished node of the left spine is a branching point for the visit, since the pro-

t'- cedure is called recursively on both children. The left child is on the left spine, while the right

child is the root of an allocation subtree for e. Within the allocation subtree the visit continues

along a path, called allocation trail until we reach a node, called allocation target for which one

of the Cases 1.3, 2, or 3.2 occurs. The time spent at each node of the left spine and at each node

slabs of left children
of distinguished nodes/e on right path

median of fork

slabs of right children
of distinguished nodes
on left path

Figure 4.11 Region r* in the analysis of operation INSERTSEGMENT.
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* special target

Figure 4.12 Subgraph of the trapezoid tree visited by the
INS ER TSEGMEYT algorithm. The target nodes are
shaded.
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of the allocation trail, target excluded, is 0 (1).

UConsider now an allocation target g of e. If g is an e-node, then its handling takes 0 (logn)

time (Case 2). If g is an O-node, then in 0 (log n) time e is inserted into the corresponding a(g)

(Case 1.3). Finally, if g. is a V-node, we are in Case 3.2. If the intersection of r with the slab of

g is a 1-supported polygon, then we have either Case 3.2.1 or Case 3.2.2, since e is adjacent to a

spanning edge of this slab. For such cases, the processing of g. takes time 0 (log n). Else (when

the intersection of r with the slab of St is a 2-supported polygon), we are in Case 3.2.3. From

Lemma 4.1, we have that this case can occur for at most one target node, called henceforth spe-

cial t, rget.

Let g. be the special target, and let c be the associated trapezoid. In the processing of g., we

recursively call the procedure on both children of gt, so that the visit branches again into two

r paths. Since edge e spans both cB and rT, each path will encounter a node for which one of the

Cases 1.3, 2, or 3.2 occurs. However, by Lemma 4.1, at most one of the polygons obtained by

intersecting region r with zB and cT is 2-supported, so that Case 3.2.3 can occur again for at most

one such node. Finally, after the recursive calls have been executed, we perform the restructur-

ing specified in the description of Case 3.2.3, which takes 0 (log n) time. Let p be the order of

p., i.e., the number of nodes on the path from g. to the root. The work done for completing the

visit originating at g. requires in the worst case time 0 (log n) plus the time for executing one

recursive call to the procedure on a node of order p - 1. Since the order of a node is at most

log N, this sums up to 0 (log n log N).

We summarize the preceding discussion as follows:

(i) The total time spent at the nodes of the path from the root to the fork and at the nodes of the

left and right spine is 0 (log n + log N).

(ii) The total time spent in traversing each allocation trail is 0 (log n), for a total time

0 (log n logN).

(ill) The time spent for processing each nonspecial target node is 0 (log n), for a total time

0 (log n logN).

(iv) The time spent for processing the special target and the subsequent visit is 0 (log n log N).
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We therefore conclude

Theorem 4.5 The complexity of operation INSERTSEGMENT (e,vj ,v 2 ,r;rj ,r 2) is

0 (log n logN).

Remark. The underlying segment-tree structure of the method effects the fragmentation into a

logarithmic number of subsegments of an edge to be inserted. Each of these subsegments, how-

ever, may not be insertable as a single entity, if it does not occur next to existing spanning edges

of the corresponding slab. Note, however, that such a spanning edge would always exist if each

region of 91 were a 1-supported polygon. Relaxing such strong constraint to 2-supportedness,

we effectively create a "channel" (a sort of "virtual diagonal") between LOW(r) and

HIGH (r) of each polygon r of 9t, which guarantees that at most one segment fragment (the one

reaching the special target) is further subdivided into a number of subsegments at most loga-

rithmic in N, before being restored to its original length as specified by the string transformation

given for Case 3.2.3.

4.7. Other Update Operations

The algorithm for operation REMOVESEGMENT (e,v 1,v 2 ,r 1 ,r 2 ;r) is similar to the one

for the INSERTSEGMENT operation, and for brevity we omit its description.

Theorem 4.6 The complexity of operation REMOVESEGMENT (e,v,v 2 ,rj,r2 ;r) is

O (log n logN).

We consider now operation INSERTPOINT (v,e;e 1 ,e2 ). The algorithm consists of two

phases. The first phase is performed by a recursive procedure consisting of the following steps:

(1) Using the query algorithm, we search for a node g of the trapezoid tree such that v lies in

the trapezoid r of g, and eisa spanning edge of o() =sI, .. ,sp, i.e., e = si for some i. _

(2) We perform some restructurings at node . (to be specified later), which correspond to

inserting v onto line MEDIAN (,r).

(3) We recursively call the procedure if v is not on line MEDIAN (,).
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The restructurings performed in Step 2 depend on the position of edge e in the sequence a(p.).

3 We distinguish three cases:

1. If e =si is a nonextreme element of the sequence a(it), i.e. i*l,p, the restructuring is

dictated by the string transformation

m si-I e Si+1 "-si-I (e)lI(e)si+i..

Omitting the details, node gt is replaced in the decomposition tree by nodes Itr, gt', and p.2, where

gt, and g2 are 0-nodes with sequences a(Lt)=sl, "'" ,si- 1 and a(it2 )=sj+ 1 , " ,sp, and ' is a

V-node. In turn, Wt' is the root of an elementary decomposition tree, whose left and right subtree

consist each of a 0-node with sequence e. and of two e-nodes.

2. If e =sI is the leftmost element of a(Mi) and p >2, the restructuring is dictated by the

U. string transformation

('01 (12) e S 2 - ('T e) 1(C2 e) s2.

Let W.' =pred(.). Node g' is associated with trapezoid T' to the left of e. Edge e is inserted into

the left and right children of g' as in the algorithm for INSERTSEGMENT.

3. If e = s, is the rightmost element of a(p.) and p > 2, the restructuring is dictated by the

string transformation

Ss,-1 e (l)l (92) - Is_1 (e' 1)l (e t 2).

This case is symmetric to Case 2 above.

4. If e = = sp, is the unique element of a(p.), the restructuring is dictated by the string

transformation

(ill) 1 (T21) e (T,2) 1 (T22) -+ (,rl e T12) I (T21 e T22).

This restructuring merges the two trapezoids associated with the V-nodes .1 =pred(t) and

g.2 = next(g.) into a unique trapezoid, represented by a new node g'. The tasks to be performed

are analogous to the ones for Case 3.2.3 of the edge insertion algorithm, and omitted for brevity.

This completes the description of the restructurings performed in the three cases. In Step 3, if v

is below MEDIAN (r) we recursively call the procedure on the left subtree of p.', while if v is
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above MEDIAN (,) we recursively call the procedure on the right subtree of A'.

A detailed time complexity analysis of the first phase can be conducted using techniques --

similar to the ones presented in the preceding section. In summary, the recursion depth is at

most 0 (log N), and the time for Step 2 is 0 (log n) for all but (possibly) one node, for which it is

0 (log n log N). Hence the first phase takes time 0 (log n log N).

The second phase rebalances the decomposition trees embedded in !3 (9t) for which the

weight of some leaf has increased by one. There are at most 0 (log N) such trees, so that the

second phase also takes time 0 (log n log N).

We therefore conclude

Theorem 4.7 The complexity of operation INSERTPOINT (v, e;e 1, e2 ) is 0 (109gn log N).

The algorithm for operation REMOVEPOINT (v,e 1 ,e 2 ;e) is similar to the one tor operation

INSERTPOINT, and we have

Theorem 4.8 The complexity of operation REMOVEPOINT (v, e 1 ,e 2;e) is 0 (log n log N).

Finally, as regards operation MOVEPOJVT (vx), we observe that it does not affect the tra-

pezoid tree. Hence, it can be simply carried out by updating the dictionary in time 0 (log n).

In conclusion, we have proved the following theorem:

Theorem 4.9 Let 9t be a convex subdivision whose n vertices lie on a fixed set L of N horizon-

tal lines. There exists a dynamic point location data stiucture for 9t with space 0 (n log N) and

query time 0 (log n + log N), which allows for insertion/deletion of vertices and edges in time

0 (log n log N), all time bounds being worst-case.

4.8. Extensions

The analysis of the query and update operations shows that the essential requirement for the

method is the monotonicity and 2-supportedness of the regions of the subdivision, while the con-

vexity requirement can be relaxed. Hence, we obtain the following corollary:

60



Corollary 4.1 Let 9t be a monotone 2-supported subdivision whose n vertices lie on a fixed set

h L of N horizontal lines. There exists a dynamic point location data structure for 9t with space

0 (n log N) and query time 0 (log n + log N), which allows for insertion/deletion of vertices and

edges in time 0 (log n log N), all time bounds being worst-case.

II6
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CHAPTER S

DYNAMIC POINT LOCATION: RECONSTRUCTION METHOD

5.1. Introduction

In this section, we present a fully dynamic technique for point location in a triangulation

with n vertices. This method features a simple and versatile 0 (n)-space data structure, which

can be used in conjunction with any of the known static point location data structures, and

allows a tradeoff between query and insertion time. Namely, we show that for any 2 < b -n-,

there exists a dynamic point location data structure with 0 (lOgb n log n) query time and

O((logb n)2 b log b) update time.

By setting b =2, we obtain 0(log2 n) query and update times, which match the result of

Chapter 3. By setting b=logn, we obtain 0(log2 n/loglogn) query time and

O (log3 n / log log n) update time. Finally, by setting b = "rn, we obtain 0 (log n) query time and

O ('n-log n) update time. This method is based on the dynamization techniques for decompos-

able search problems described in [3,42],

The rest of the chapter is organized as follows. Section 5.2 contains preliminary --

definitions. The dynamic technique is described in Section 5.3.

5.2. Preliminaries

Let 9t be a triangulation. We consider the following update operations on 9t:

INSERTSTAR (v,r;r1 ,r 2,r 3 ): Add vertex v inside region r and edges between v and the

vertices of r, which is decomposed into new regions r 1 , r 2, and r3 (see Fig. 5.1(a)).

REMOVESTAR (v,r 1 ,r 2 ,r 3 ;r): Remove degree-3 vertex v and its incident edges, which

merges the three regions formerly containing v into a new region r (see Fig. 5.1(a)).

SWAPDIAGONAL (e;rl ,r 2): Let e be an edge such that the union of the two regions on

the left and right of e is a convex quadrilateral. Remove e and reinsert it as the other diagonal of
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the quadrilateral, thus creating two new regions r1 and r2. (see Fig. 5.1(b)).

i The problem of performing point location in 9t under the above set of dynamic updates will

be called problem PL-1. The following theorem demonstrates the adequacy of the above reper-

tory.

r2

(a)

r e

(b)

Figure 5.1 (a) Example of operation INSERTSTAR/
REMOVESTAR; (b) Example of operation
SWAPDIAGONAL.
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Theorem 5.1 An arbitrary triangulation 9t with n vertices can be assembled starting from the

empty subdivision, and disassembled to obtain the empty subdivision, by a sequence of 0 (n)

operations from the above repertory.

Proof: We constructively demonstrate only the disassembly of 9t, since the assembly is obtain-

able by replacing each operation with its inverse and by reversing their order. If 9t has a vertex

u of degree 3, we remove u by means of a REMOVESTAR operation. Otherwise, we know that

9 has at least one vertex v of degree d e (4,5) (an easy consequence of Euler's formula). Con-

sider the neighbors v0,v 1 , V "",d -I of vertex v, in clockwise order around v. Each pair of two

consecutive neighbors forms with v a triangle ti = (v,vi,v i + 1) (sum over the indices is modulo d).

Since the sum of the internal angles of the polygon (v0 ,v 1, ... ,vd-I) is equal to (d-2) X, it is

easy to verify that for at least one index i, the union of triangles ti and ti + 1 is a convex quadrila-

teral. Hence, by a sequence of at most two SWAPDIAGONAL and one REMOVESTAR opera-

tion, we can remove vertex v. A simple inductive argument completes the proof. 0

First, we consider another variant of the dynamic point location problem, denoted as prob-

lem PL-2, which is described as follows: Let T be a set of triangles such that the interiors of any

two triangles of T are disjoint. We want to perform the following operations on T:

FIND (q,T): Return the triangle t of T that contains the query point q; if q is on some edge

(or vertex) of t, the edge (or vertex) itself is returned; if no triangle contains q, a null value is

returned.

ADD (tT): Add triangle t to T; the operation is allowed only if t does not intersect the

interior of any other other triangle of T.

DELETE (t,T): Remove triangle r from T.

We denote with Find(m), Add(m), and Delete(m) the time to perform operations FIND, ADD,

and DELETE, respectively, where m is number of triangles of T.

Since a triangulation 9t with n vertices has m = 2 n -4 regions, and each of the update

operations for problem PL-1 corresponds to at most four ADDIDELETE operations in problem

PL-2, we have
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Lemma 5.1 Given a data structure for problem PL-2, there exists a data structure for problem

I PL-1 with the same (order of) space requirement and query time, and such that each update

operation takes time 0 (Add(n)+Delete(n)).

5.3. The Incremental Reconstruction Method

In this section, we show an efficient solution to problem PL-2 based on the following

straightforward decomposition property:

Lemma 5.2- Denoting by (T1 ,T 2) a partition of T, we have

FIND (p,T)= FIND (p,T1 ) u FIND (p,T 2). 0

- The main idea is to maintain a partition of the set T into 0 (log m) subsets, where each sub-

set has a separate static data structure for point location. Using the decomposition property, the

answer to FIND (p,T) can be obtained by performing a separate FIND in each subset, and then

combining the answers. Since each subset has no more than m elements, each subquery takes

0 (logim) time, so that the global time for operation FIND is 0 (log2 m). Also, since the space

requirement for each subset is linear, the overall space requirement is 0 (m). In order to show

that operation ADD can also be efficiently performed, we describe the data structure in more

* detail.

Let a v,a- v ",a0 be the binary representation of m (the number of triangles of 7),

where v = Llog mJ. The dynamic data structure D for T consists of v + I static point location

data structures So, • " ,S v, where Si represents a subdivision induced by exactly aj2' triangles.

After the addition of a new triangle, m increases to m + 1, so that in order to maintain the data

structure D, we have to discard the static structures Si corresponding to the bits that change from

one to zero, and create new static structures for the bits that change from zero to one. In the

worst case, namely when m + 1 is a power of two, this takes 0 (m) time, since we have to discard

all the existing static structures and build from scratch a new data structure for m + 1 triangles.

However, the average time complexity over a sequence of m ADD operations to an initially

empty data structure, denoted Add(m), is Add(m) = 0 (log 2m). To see this, assume for simpli-

city that m 2" -1. From elementary properties of binary counting, the static structure Si is
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" .......... . ..

built exactly 2 vi-1 times, so that the total insertion cost over a sequence of m insertions is
- V-1!

mAdd(m)= I 2v-i'lP(2i)
i=O

where P(k) = 0 (klog k) is the (preprocessing) cost for building an optimal static point location

structure fork triangles [13]. With simple manipulations, weObtain -

mAdd(m)=O I2v--12ii' =0 2v- vi] =O(mlog2 m).
ifO i=0

At this point, we have an 0(m) space semidynarnic data structure with 0(m) space

requirement that supports operation FIND in time 0 (log2 m) (worst-case) and operation ADD in

time 0(log2 m) (amortized). The amortized time bound for ADD can be turned into a "worst-

case" bound by spreading the work for building each static structure Si over several consecutive

steps, so that after each ADD operation 0 (log2m) work is performed [3,42]. This data structure

has a special type of worst-case time bound, since the restructuring operations are distributed

over time. We will refer to such time bound as a distributed worst-case time.

The above discussion can be summarized as follows:

Lemma 5.3 There is a data structure for problem PL-2 with 0 (m) space requirement that sup-

ports operations FIND and ADD in time 0 (log2m) (distributed worst-case).

In order to perform efficiently operation DELETE also, we use a "lazy" deletion scheme.

First, we modify the aforementioned data structure by adding a mark field to every record that

describes a triangle of T, so that DELETE (t,T) can be simply performed by setting the mark of t.

Also, we modify the procedure for constructing the static point location structures, so that only

the unmarked triangles are considered in search operations, while the marked ones serve the only

purpose of maintaining the nominal size of the structure.

This modified structure D allows for efficient queries and updates as long as the number k

of marked triangles does not exceed a fixed fraction of the total number m of triangles, say one

half. If after a deletion we have k > m /2, we start building a new structure D' of the same type

for the unmarked triangles only. We spread the construction of D' over m14 steps, where a step
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corresponds to an update operation. At each step we add two "old" triangles to D' and we per-

* form the current update operation (ADD or DELETE) on both D and D'. After the completion of

all the steps, D' is ready and replaces D. Notice that the total number m' of triangles in D' and

the number of marked triangles k' satisfy the relations

2 2 404 4

so that we have lm < 1/2, which means that also D' can support queries and updates efficiently.

During the construction of D', we perform the FIND operations on D, for which the number of

marked triangles does not exceed one fourth of the total number of triangles.

Therefore, by using at most two data structures that allow only for insertions and lazy dele-

tions, and maintaining the invariant that the number of marked triangles does not exceed a fixed

fraction of the total number of triangles, we obtain a complete dynamic solution for problem

PL-2 with 0 (log2m) query and update time:

Theorem 5.2 There is a data structure for problem PL-2 with 0 (m) space requirement that sup-

ports operations FIND, ADD, and DELETE in time 0 (log2m) (distributed worst-case).

Recalling Lemma 5.1, we obtain the following result for the original problem PL-1.

* Corollary 5.1 There is a data structure for the dynamic point location problem PL-1 with 0 (n)

space requirement and 0 (log2 n) (distributed worst-case) query and update times.

The aforementioned technique for problem PL-2 makes use of the properties of counting in

base 2. By using a larger base, we can reduce the number of static data structures used. In fact,

using a base b , 2 the above data structure can be modified to work with a partition of T into sub-

sets Sij, i =-0, .• ,v; j = 1, --. ,(b - 1); where v=logb m, and each subset Sij has size b'.

Using arguments similar to the ones already given for the case b = 2, we can show that this

data structure has 0 (m) space requirement and

Find(m) =0 (logb m log m); Add(m) =Delere(m) = O((logb m)2 b log b).

To obtain an improvement in the search time, we can let the base b grow with m. Applying the
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results described in [38], we obtain

Theorem 5.3 Let 9t be a triangulation with n vertices, and let b =b(n) be a smooth nondecreas-

ing integer function with 2 < b 'F. There exists a data structure for point location problem

PL-1 with 0(n) space requirement, 0 (1ogb n log n) query time and 0 (logb n)2 b log b) update

time.
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CHAPTER 6

DYNAMIC TRANSITIVE CLOSURE

6.1. Introduction

The notion of a planar st-graph - i.e., a planar acyclic digraph embedded in the plane with

exactly one source, s, and one sink, t, both on the external face - was first introduced in the

planarity testing algorithm of Lempel et al. [36], and was fruitfully used in a number of applica-

tions, which include planar graph embedding [9,30,54], graph planarization [29,44], graph

drawing algorithms [10,53,591, floor planning [4,57] planar point location [13,35], visibility

representations [41,49,51,58], motion planning [21,48], and VLSI layout compaction [25,57].

Also, planar st-graphs are important in the theory of partially ordered sets since they are associ-

ated with planar lattices [32].

In this chapter we further the investigation of these structures, and show that any planar st-

graph G admits two total orders (referred to as leftist and rightist orders) on the set V u E u F,

where V, E, and F are respectively the set of vertices, edges, and faces of G. Each of these two

*l orders yields a unique representation of G as a string whose terms are symbols representing all

the topological constituents of G. Graph G can be dynamically modified by means of insertion

of edges and expansions of vertices, and of their inverses. These operations form a complete set,

since any n-vertex planar st-graph can be assembled or disassembled by an appropriate sequence

of 0 (n) such operations.

The central result of this chapter is that the string representation of the graph resulting from

one of the postulated updating operations is obtained as a syntactic transformation of the original

string representation. This transformation consists of the execution of 0 (1) primitives, such as

insertions, deletions, and swaps of substrings.

This general framework provides the theoretical underpinning and unifying viewpoint for

three significant applications: point location in a planar monotone subdivision, transitive-closure
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query in planar st-graphs, and contact-chain query in convex subdivisions. In this chapter we

shall only briefly illustrate (in Section 6.4) the connection between planar st-graphs and mono-

tone subdivisions, since the point location problem in the latter has been treated earlier in

Chapter 3 in purely geometric terms.

A transitive-closure query for a planar st-graph G consists of testing for the existence of

(andjor reporting) a directed path between two vertices u and v of G. We are interested in a

graph G that can be dynamically modified.

The previous best results concern semi-dynamic versions of the transitive-closure query

problem in digraphs (namely, edge insertions in general digraphs and edge deletions in acyclic

digraphs), and have 0(1) query time, 0(n) amortized update time, and 0(n 2) storage

[27,28,45]. In this chapter we establish the following result:

Theorem 6.1 Let G be a planar st-graph with n vertices. There exists an 0 (n)-space dynamic

data structure for the transitive-closure query problem on G, which supports queries and updates

in time 0 (log n) (worst-case).

Finally, we consider the problem of contact-chain query in convex subdivisions, which

arises in motion planning and computer graphics, and is described as follows [8,21,48]. Given a

convex subdivision 9t of the plane and an (oriented) direction 0, we say that region r, pushes

region r 2 if r, and r2 are adjacent and there exists a line in direction 0 which intersects r, and

r2 in that order. A contact chain in 9t is a sequence of regions r 1,r2 , - ' ,rk such that ri pushes

ri+I for i = 1, . ,k- 1 (see Fig. 6.1). Assume that the regions of 9t are rigid objects, and we

want to translate them one at a time in direction 0 avoiding collisions. Then the existence of a

contact chain from r, to r 2 implies that r2 obstructs rI, i.e., r2 must be translated before r1 .

A contact-chain query consists of testing the existence of (and/or reporting) a contact chain

between two regions of 9t. We are interested in answering contact-chain queries in a very gen-

eral dynamic environment, where 9Z can be updated by means of insertions/deletions of vertices

and edges, and the direction 0 can be changed by elementary increments/decrements. (An ele-

mentary increment/decrement of direction is such that the push relation is inverted for exactly

one pair of adjacent regions.) Casting this problem in the planar st-graph framework, we
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* Figure 6.1 Example of contact chain;

establish the following result:

Theorem 6.2 Let T1 be a convex subdivision with n vertices. There exists an 0(n)-space

dynamic data structure for the contact-chain query problem in 9t, which supports queries and

updates in time 0 (log n) ( worst-case).

The rest of this chapter is organized as follows. Section 6.2 provides preliminary

definitions and properties of planar st-graphs. Section 6.3 presents the technique for the dynamic

maintenance of planar st-graphs. Applications to planar point location, transitive closure, and

contact chains are described in Section 6.4.

6.2. Planar st-Graphs

Basic definitions on graphs and posets can be found in textbooks such as [5, 15].
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Let G be a directed graph, for brevity digraph, and v a vertex of G. As usual, we denote by

deg(v) the indegree of v, i.e., the number of incoming edges of v, and by deg+(v) the outdegree

of v, i.e., the number of outgoing edges of v. A source of G is vertex s with deg(s) =0. A sink

of G is vertex t with deg+(t) = 0. A transitive edge of G is an edge e = (u,v) such that there exists

another directed path from u to v consisting of at least two edges.

A planar st-graph is a planar acyclic digraph G with exactly one source, s, and exactly one

sink, t, which is embedded in the plane so that s and t are on the boundary of the external face

(see Fig. 6.2).

These graphs were first introduced in the planarity testing algorithm of Lempel et al. [36].

Several important properties of planar st-graphs are expressed by the following lemmas:

v6 = t

V5 f2 V4

ee

o= eV 2

Figure 6.2 Example of planar st-graph.
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Lemma 6.1 [36] Every vertex of G is on some directed path from s to t.

Lemma 6.2 [51] For every vertex v of G, the incoming (outgoing) edges appear consecutively

around v (See Fig. 6.3(a)).

Lemma 6.3 [51] For every face f of G, the boundary of f consists of two directed paths with

common origin and destination. (See Fig. 6.3(b)).

Lemma 6.4 [10,33] G admits a planar upward drawing, i.e., a planar drawing such that every

edge (u,v) is a curve monotonically increasing in the vertical direction.

Let P be a poset (partially ordered set), where -c denotes the partial order on the elements

of P. The Hasse diagram (also called covering digraph) of P is a digraph G whose vertices are

the elements of P, and such that (u,v) is an edge of G if and only if u-Cv and there is no other

element x of P such that ucx-cv. G is acyclic and has no transitive edges, i.e., G is the

aHIGH

LEFT (v) v RIGHT (v)

LOW ')

(a) (b)

Figure 6.3 (a) Example for Lemma 6.2. (b) Example for Lemma 6.3.
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transitive reduction of the graph of - on vertex set P. Hasse diagrams are usually represented

by straight-line drawings such that for each edge (u,v) the ordinate of vertex u is smaller that -

that of vertex v.

A planar lattice is a poset whose Hasse diagram is a planar st-graph. Also, every plane st-

graph without transitive arcs is the Hasse diagram of some planar lattice. Several properties of

planar lattices are described in [32]. -

A linear extension of a poset P is a total order < on the elements of P such that, for any

two elements u and v of P, u-cv implies u < v. A linear extension corresponds to a topological

sorting of the vertices of the Hasse diagram of P. We say that P has dimension k if G admits k

linear extensions <1 , <2, <k, such that u'v if and only if U <1 V , U <2 V , u <k V,

and k is minimum.

It is known that planar lattices have dimension 2 [5, p. 32, ex. 7(c)] [31,32], which implies

the following lemma:

Lemma 6.5 [5,31,32] Let G be a planar st-graph with n vertices. There exist two total orders

on the vertices of G, denoted <L and <R, such that there is a directed path from u to v if and _

only if u <L v and u <R v. Furthermore, orders <L and <R can be computed in 0 (n) time.

Lemma 6.5 is based on the fact that the underlying partial order of a planar lattice admits a
"complementary" partial order (see [32]). Figure 6.4(a) shows a planar st-graph where each

vertex is labeled by its ranks in the orders <L and <R .

In the following definitions, the concepts of left and right refer to the orientation of the

edges. For example, the face to the left of an edge (u,v) is the face containing edge e which

appears on the left side when traversing edge (u,v) from vertex u to vertex v. Also, the reader

will find it convenient to visualize the planar st-graph G as being drawn in the plane with edges

monotonically increasing in the vertical direction (see Lemma 6.4).

Given vertices u and v of G such that there exists a path from u to v, the set of paths from u

to v defines a planar st-graph with source u and sink v which is an induced subgraph of G. The

two paths that form the external boundary of this subgraph will be called the leftmost path and

rightmost path from u to v, respectively. For example, the external boundary of G consists of the
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6 6 -

2* 3 -- - t*

1 4 2 , -II

(a) (b)

i ~Figure 6.4 (a) Orders <L. and <R on the vertices of a_-

planar st-graph; (b) A planar st-graph G and its dual G.

leftmost and rightmost paths from s to t.

Let G* be the digraph obtained from the dual graph of G as follows (see Fig. 6.4(b)):

(1) the dual edge e * of an edge e is directed from the face to the left of e to the face to the ight

of e; (2) the external face of G is dualized to two vertices of G*, denoted s* and t*, which are

incident with the duals of the edges on the leftmost and rightmost paths from s to t, respectively. J

Vertices s* and t* can be thought of as being the "left" and "right external face" of G, respec-

tively. It is simple to verify that G* is a planar st-graph with source s* and sink t* [41,511.

Notice that G * might have multiple arcs.

Let V, E, and F denote the set of vertices, edges, and faces of G, respectively, where F has

elements s * and t * representing the external face. We will show that the orc -rs <L and <R Can

be extended to the set V u E u F, thereby giving a unique total order of all topological consti-
tuents of G.
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First, for each element x of V u E u F, we define vertices LOW (x) and HIGH (x), and faces

LEFT (x) and RIGHT (x), as follows:

(1) If x=ve V, we define LOW(v)=HIGH(v)=v. Also, with reference to Lemma 6.2 and

Fig. 6.3(a), we denote by LEFT (v) and RIGHT (v) the two faces that separate the incoming

and outgoing edges of a vertex v&s, t, where LEFT (v) is the face to the left of the leftmost

incoming and outgoing edges, and RIGH7 (v) is the face to the right of the rightmost

incoming and outgoing edges. For v -s or v = t, we conventionally define LEFT (v) = s*

and RIGHT (v) = t*.

(2) If x =e e E, we define LOW(e) and HIGH (e) as the tail and head vertices of e, respec-

tively. Also, we denote by LEFT (e) and RIGHT (e) the faces oc the left and right side of e,

respectively.

(3) Ifx=fe F and f-s*,t*, we denote by LOW(f) and HIGH (f) the two vertices that are the

common origin and destination of the two paths forming the boundary of f(see Lemma 6.3

and Fig. 6.3(b)). Vertices LOW(f) and HIGH(f) are called the extreme vertices of face f.

For f=s* or f=t*, LOW(f) and HIGH(f) are undefined. Also, we define

LEFT(f)=RIGHT(f)=f. Finally, the two directed paths forming the boundary of f are

called the left path and right path of f, respectively.

We say that x is below y, denoted xTy, if there is a path in G from HIGH(x) to LOW(y).

Also, we say that x is to the left of y, denoted x-+y, if there is a path in G* from RIGHT(x) to

LEFT (y).

For example, in the planar st-graph shown in Fig. 6.2, we have e 2Tv 4 , f 4Tv 4 , v 5 --+f4 , and

e I-*f2.

Lemma 6.6 Relations T and -- are partial orders on V u E u F.

Proof: A consequence of the fact the graphs G and G * are acyclic. 0

The following lemma shows that T and -+ are complementary partial orders.
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Lemma 6.7 Let x and y be any two elements of V u E u F. Then one and only one of the fol-

m lowing holds:

x Ty, y Tx, x -y, y.-- x.

Proof: We prove the theorem for the case when y = v is a vertex of G. The other two cases can

- be proved using similar arguments.

Let x, and x2 be the leftmost and rightmost paths from s to v, respectively. Also, let x3

and r be the leftmost and rightmost paths from v to t, respectively. These paths partition

V u E u F into five subsets, one of which is v, and the others are defined as follows (see Fig.

6.5):

(1) A contains the vertices, edges, and faces enclosed by paths 7r and xt2 , including the vertices

and edges of these paths, but excluding v;

t

91 'X2
NA

Figure 6.5 Partiton of V L E ui F with respect to vertex v.
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(2) B contains the vertices, edges, and faces enclosed by paths t3 and x4, including the vertices

and edges of these paths, but excluding v;

(3) C contains the vertices, edges, and faces to the left of paths ir and 73, excluding the ver-

tices and edges of these paths;

(4) D contains the vertices, edges, and faces to the right of paths X2 ard n4 , excluding the ver-

ices and edges of these paths.

It is easy to verify that the edges of A are those of a planar st-graph with source s and sink

v, which is an induced subgraph of G, and, similarly, the edges of B are those of a planar st-

graph with source v and sink t. Notice that the vertices w of A are exactly those such that there is

a directed path in G from w to v, and analogously for the vertices of B.

Using simple duality arguments, we can show that the duals of the edges of C are those of a

planar st-graph with source s* and sink LEFT (v), which is an induced subgraph of G*. Simi-

larly, the duals of the edges of D are those of a planar st-graph with source RIGHT (v) and sink
t*. Notice that the faces fof C are exactly those such that there is a directed path in G fromf

to LEFT (v), and analogously for. the faces of D.

By Lemma 6.1, there are directed paths from every vertex of A to v, and from v to every

vertex of B. Since for every edge or face x of A (B), both LOW (x) and HIGH (x) are in A (B),

we conclude that x e A implies xTv and x c B implies vTx. With similar arguments, we con-

clude that x e C implies x-v and x e D implies v-+x.

It remains to be shown that relations T and -* are mutually exclusive. Let x e A U B, i.e.,

either xTv or vtx. Suppose xTv; if x-+v, then there is a path in G* from RIGHT(x) to

LEFT(v). This implies that RIGHT(x)e C, a contradiction. An analogous contradiction is

reached if we assume that xTv and v- x jointly hold. Finally, let x E C uD, i.e., either x-+v or

v-*x. Suppose x-.v; if xTv,then there is a path in G from HIGH(x) to v. This implies that

HIGH (x) e A, a contradiction. An analogous contradiction is reached if we assume that x--wv

and vTx jointly hold. 0

We define relations <L and <R on V u E u F, as follows:
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X<Ly **xTyorx--y; X<Ry *=xtyory--x.

As a consequence of Lemma 6.7, we obtain

Theorem 6.3 The relations <L and <R on V u E uF are total orders.

m We also note that there is a path in G from vertex u to vertex v if and only if u <L v and

u <R v, since such path exists if and only if utv.

We define the left-sequence of G as the sequence of elements of V u E u F, sorted accord-

ing to <L (leftist order). The right-sequence of G is defined similarly with respect to <R

(rightist order).

For example, the right-sequence of the graph of Fig. 6.2 is:

- f 5voe 3f 4e 2v1 e 4v 2e8 f 3e5 v 3e7 v 4 e lof 2e6flelv5egv6fo.

We will use a convenient string notation for such sequences. Namely, we use terminal

symbols (lower-case letters) for the elements of V u E u F, and variables (upper-case letters) for

substrings of the left- or right-sequence. For example, the left-sequence of the graph of Fig. 6.2

can be represented by the string

f0v0e jAv 3e 6 v5 e9f 2B

* where A =fje 2v je5 and B =e 7f3e4f 4e3v 2esv 4eov6f5 .

6.3. On-Line Maintenance of a Planar st-Graph

In this section we define a complete set of update operations on a planar st-graph, and show

that the restructuring of the orders <L and <R resulting from any such update operation can be

expressed by means of a simple string transformation. From this result, we derive an efficient

data structure for the on-line maintenance of the two orders of a planar st-graph.

The update operations on a planar st-graph are defined as follows:

INSERTEDGE (e,u,v,f;f1 ,f2): Add edge e = (u,v) inside face f, which is decomposed

into faces fI and f2, with fI to the left of e and f2 to the right (see Fig. 6.6(a)).
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REMOVEEDGE (e,u,v,fl f2;f): Delete edge e = (u,v) and merge the two faces fI and f2

formerly on the two sides of e into a new face f (see Fig. 6.6(a)).

EXPANDVERTEX (e,fg,v;vl,v 2): Expand vertex v into vertices v, and v 2 , which are

connected by a new edge e with face f to its left and face g to its right (see Fig. 6.6(b)).

CONTRACTVERTEX (e,f,g,v1 ,v 2 ;v): Contract edge e=(v1 ,v2 ), and merge its endpoints

into a new vertex v. Faces f and g are to the left and right of e, respectively (see Fig. 6.6(b)).

Parallel edges resulting from the contraction are merged into a simple edge.

Each operation is allowed if the resulting graph is itself a planar st-graph. It is interesting

to observe that operations EXPANDVERTEX and CONTRACTVERTEX are dual of INSERT-

EDGE and REMOVEEDGE, respectively, since performing one on G corresponds to performing

the other on G*. I

We say that an edge e of G is removable, if operation REMOVEEDGE (e,u,v,fj ,f2 J) on G

yields a planar st-graph. We say that e is contractible if operation

CONTRACTVERTEX (e,fg,v 1,v2 ;v) on G yields a planar st-graph.

Lemma 6.8 Let e be an edge of G.

(1) If e is not removable then it is contractible.

(2) If e is not contractible then it is removable.

Proof: From the defiddon of planar st-graph, it is easy to see that an edge e = (u, v) is remov-

able if and only if deg+(u) > 2 and deg-(v) > 2, and it is contractible if and only if it is not a tran-

sitive edge. (1) Assume that edge e = (u,v) is not removable. Then we have deg'(u) = 1 and/or

deg-(v) = 1. This implies that there is no other path in G from u to v, so that e cannot be a transi-

tive edge. Hence, edge e is contractible. (2) Conversely, assume that edge e = (u,v) is not con-

tractible. Then e is a transitive edge, which implies deg+(u) 2 and deg-(v) 2, so that e is

removable. 0

A simple induction based on Lemma 6.8 yields
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Figure 6.6 (a) Operations INSERTEDGE and
REMOVEEDGE. (b) Operations EXPAND VERTEX and
COiVTRACTVERTEX.

Lemma 6.9 Let Go be the trivial planar st-graph consisting of a single ,ertex. Any planar st-

graph with n vertices can be assembled starting form Go by means of 0 (r) INSERTED GE and

EXPAND VERTEX operations, and can be disassembled to yield Go by tans of 0 (n) REMO-

VEEDGE and COW1'RACTERTEX operations.

Now, we describe the transformation of the leftist order <L as a consequence of operations

INSERTEDGE (e,u,vfj1 '12). Similar arguments hold for the order <R and for operation

EXPAND VERTEX (e,fg, v;v 1 , ,v2 ).



.-,

Theorem 6.4 Let G be a planar st-graph, and G' be the graph obtained from G after the execu-

tion of operation INSERTEDGE (e,u,v,f;f ,f2). Depending on the relative orders of u, v, and f

we have the following transformations (left-sequence of G) *= (left-sequence of G'):

(1) u<Lv<Lf: AuBvCfD *AuBftevCf 2 D;

(2) f<Lu<Lv: AfBuCvD =*AfBuef 2 CvD;

(3) u<Lf<Lv: AuBfCvD AuBfief 2 CvD;

(4) v<Lf<LU: AvBfCuD =*AftCuevBf 2 D.

Proof: The four cases are illustrated in Fig. 6.7. First, we observe that the union of the elements

of V u E u F associated with any one of the substrings A, B, C, and D, is a topologically con-

nected region of the plane. The above regions, together with u, v, and f, form a partition of the

entire plane, which is determined by four paths, and specifically

(i) the leftmost path from HIGH (I) to r,

(ii) the rightmost path from s to LOW(f); and

(iii) depending respectively on each of the four cases, the following two paths:

(1) the leftmost paths from u to t and from v to t (see Fig. 6.7(a-b));

(2) the rightmost paths from s to u and from s to v (see Fig. 6.7(c-d));

(3) the leftmost path from u to t and the rightmost path from s to v (see Fig. 6.7(e-f));

(4) the leftmost path from v to r and the rightmost path from s to v. (3ee Fig. 6.7(g-h)).

We discuss in detail Case 4 (see Fig. 6.7(g-h)). The proof for the other cases can be derived with

similar arguments. The insertion of edge e causes every vertex in C to be connected with a

directed path to every vertex of B. At the same time, the insertion of e breaks all the paths of G

from the faces of B to the faces of C. Hence, we have the following relations:

A <Lfl, fI-*C, C 'u, ufTe, eTv, v TB, B- f 2 , f2 <LD,

where a substring represents compactly all of its elements. These relations yield immediately

the updated left-sequence. 0
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Theorem 6.4 shows that the update of the order <L is a simple syntactic transformation of

3the left-sequence, consisting of at most four insertions/deletions of elements, and at most one

swap of substrings. S'nce operation REMOVEEDGE is the inverse of operation INSERTEDGE,

the order before and after the deletion can be obtained by reversing the transformations given in

Theorem 6.4. The same situation arises with respect to operations EXPAND VERTEX and CON-

- TRACTVERTEX. We can summarize these results as follows:

Theorem 6.5 Let G be a planar st-graph, and G' be the graph obtained from G after update fI,

where 1l is one of INSERTEDGE, REMOVEEDGE, EXPAND VERTEX, or CONTRACTVERTEX

operations. Then the left-sequence of G' can be obtained from the left-sequence of G by means

of at most four insertions/deletions of elements, and at most one swap of substrings.

Theorem 6.5 allows us to design a simple and yet efficient data structure for maintaining

on-line the orders of a planar st-graph G. We represent orders <L and <R by means of two bal-

anced binary trees (such as red-black trees [55, pp. 52-53]), denoted TL and TR, where the left-

to-right order of the leaves of TL gives the left-sequence of G, and the left-to-right order of the

leaves of TR gives the right-sequence of G. From Euler's formula, trees TL and TR have 0 (n)

nodes, so that their depth is 0 (log n).

An order-query on a planar st-graph G consists of determining, given elements x and y of

* V u E u F, whether x <L y or y <L x, and similarly with respect to order <R.

Lemma 6.10 Let T be a binary tree, X and X2 two leaves of T, and gt the lowest common ances-

tor of X and X2. Then X, precedes X2 in the left-to-right order if and only if X, is in the left

subtree of g4 (and X1 is in the right subtree of .).

Proof: The theorem is an immediate consequence of the following recursive definition of the

left-to-right order of the leaves of T:

(1) If leaf )L is in the left subtree of T and 2.2 is the right subtree, then X1 precedes X2 .

(2) If X and X2 are in the same subtree T' of T, say the left subtree, then X, precedes X2 in T if

and only if X precedes X in T'. 0
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Theorem 6.6 An order-query can be executed in 0 (log n) time.

Proof: The order-query algorithm is as follows. We access the leaves of tree TL associated with

elements x and y, and we trace the paths Px and py from these leaves to the root of TL. This

allows us to find the lowest common ancestor g of leaves x and y. From Lemma 6.10, we have

that X <L Y if and only if the node of p.x immediately preceding . is the left child of g.. Since

paths p, andpy have length 0 (log n), we obtain the stated time bound. 0

Let T be a balanced binary tree. The left-to-right sequence of the leaves of T will be

denoted by A(T). Two basic operations on balanced binary trees are defined as follows:

SPLIT (TX;T1 ,T2): Construct from tree T two balanced binary trees T, and T2 , such that

A(TI) is the portion of A(T) from its leftmost leaf to X, and A(T2 ) is the remaining portion of

A(T). Tree T is destroyed by the operation.

SPLICE (T1 ,T2 ;T): Construct from the balanced binary trees T1 and T2 a new balanced

binary tree T such that A(T) is the concatenation of A(T1) and A(T2 ), with A(T1) occurring to the

left of A(T2). Trees T, and '2 are destroyed by the operation.

Let m be the number of leaves of tree T. Standard techniques allow the performance of

each of the above operations in O (logm) time [55, pp. 52-53].

Regarding the update operations on the planar st-graph G, the syntactic transformations on

the left- and right-sequence of G correspond to performing 0(1) insertions/deletions and

SPLITISPLICE operations on the trees TL and TR. Notice that the elements of V U E U F

involved in the update identify the elements of the left-sequence that are inserted, deleted, or are

at the boundary of substrings to be swapped. For example, the algorithm for operation INSERT-

EDGE is as follows:

Algorithm INSERTEDGE (e,u,v,f;f'f2)

(1) Determine the relative order of u, v, and f in the left-sequence of G by applying the order-

query algorithm outlined in the proof of Theorem 6.6. This determines which of the four

cases of Theorem 6.4 applies.
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(2) Access leaves u, v, and f in tree TL and remove them. Also, by means of at most three

3 SPLIT operations, construct from TL four trees associated with substrings A, B, C, and D.

(3) Destroy leaf f and create new leavesfI and f2.

(4) Assemble the updated tree TL from the leaves u, v, f1, and f2, and from the trees associated

with A, B, C, and D by a sequence of SPLICE operations and insertions. The correct left-

to-right order of these constituents is selected according to the specifications of Theorem

6.4.

(5) Perform the above Steps 1-4 on the right-sequence and tree TR.

Analogous algorithms can be formulated for the other update operations, and we have

Theorem 6.7 The restructuring of trees TL and TR after any one of the update operations

INSERTEDGE, REMOVEEDGE, EXPANDVERTEX, and CONTRACTVERTEX can be per-

formed in O (log n) time.

1 6.4. Applications

The general framework for the maintenance of orders <L and <R in a planar st-graph can

be profitably used in three interesting applications: (i) dynamic point location in monotone sub-

divisions, (ii) dynamic transitive-closure query in planar st-graphs, and (iii) dynamic contact-

chain query in convex subdivisions.

6.4.1. Dynamic planar point location revisited A monotone subdivision 9t is associated with

a planar st-graph G such that (see Fig. 6.8):

(1) the vertices of G are the vertices of 91, plus two special vertices s and t, associated with ver-

tices at infinity in the vertical direction;

(2) the arcs of G are associated with the edges of 9t, and oriented from the lower to the upper

endpoint (horizontal edges are oriented from left to right); also G contains arcs connecting

consecutive vertices of 9t at infinity.

Note that the vertices on the external boundary of G are the vertices of 9t at infinitity, plus s and

t. Since monotone chains in 9t correspond to directed paths in G, Theorem 3.2 of Chapter 3 can
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Figure 6.8 (a) Monotone subdivision; (b) The planar st-
graph associated with the monotone subdivision of part (a).

be viewed as the geometric counterpart of Lemma 6.9.

Let rl,r2 , " ,rf be the regions of 9t, sorted according to some total order < compatible

with relation -+, i.e., ri--jr implies i <j. The common boundary of the regions with index less

than or equal to i and of the ones with index greater than i is a separator of 9t denoted az.

Clearly, ci is to the left of aj for i < j. Hence, the order < defines a complete family of separa-

tors Z = (a,, " .of- 1). Notice that region ri is the portion of the plane between separators

ai-1 and ao. Conversely, a complete family Z= (a,, .. a I ) off-1 separators defines a

total order r1 ,r 2 , "',rf on the regions compatible with relation -+, where ri is the unique

region contained between separators ai - I and a1 .

In the point location technique of Lee-Preparata [35] the leaves of the separator-tree Z are

the regions of 9t, sorted from left to right according to <, and the sequence of the nodes of Z in
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symmetric order is r Ijr 2 -•f- I rf. A REMOVECHAIN operation might cause the order of

31 the regions given by 2 to become inconsistent with relation -+ (see Fig. 6.9), and the consequent

rearrangement of this order might require the reconstruction of large portions of S. Our

dynamic point 'location technique overcomes the above obstacle using the leftist order <L on the

regions of 91 to define the family of separators Z, so that the reanangement of the separator tree

after an update can be performed by a simple transformation.

With regard to channels, we observe that the channel between two vertically consecutive

regions r I and r 2 consists exactly of the vertices and edges between HIGH (r1) and LOW (r 2) in

the left-sequence of G. For example, the left-sequence of the subdivision of Fig. 6.10 (omitting

"" r4 + o r 4  "

r 5  r6  ' r6  "
* r7

• rI  r
r r2

r1 r2 r3 r4 r5 r6  rI r1  r6

Figure 6.9 Example of REMOVECHAIN operation which
causes the order of the regions given by the separator-tree
to become inconsistent with relation --+.
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vertices and edges at infinity) is given by the string r, el r 2 e 2 A e5 r 3 e 6 r4 , where the sub-

string A =vI e 3 V 2 e 4 v3 is associated with the channel between r1 and r2 . With regard to the

INSERTCHAJN operation, we observe that Theorem 3.8 of Chapter 3 is the geometric counter-

part of Theorem 6.4.

6.4.2. Transitive-closure query Recall that a transitive-closure query on a planar st-graph G

consists of determining the existence of a directed path between vertices u and v of G. Such

query is equivalent to testing whether both u <L v and u <R v so that, by Theorem 6.6, it takes

O (logn) time. This establishes Theorem 6.1 of Section 6.1.

A variant of query reports a path between u and v, and can be executed in time

O(logn+k), where k is the number of path edges. First, we query (in O(logn) time) the

existence of a path between u and v. Suppose that such path exists and, say, uTv. We know that

the leftmost path from u to t and the leftmost path from s to v have at least one vertex in com-

mon. Resorting to a standard DCEL representation of the planar st-graph (see [47, pp. 15-17]),

we can trace each of these two paths. Alternating between them one edge at a time, we trace the

/" r3

JI e5 e6s ~e6  •"

' I v3e4

, r, r4

e3 !

". .4e2

Ie

-r2

Figure 6.10 Example of channel.
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....... -. , .-. - .,-- - .=, ,,an u mmmsmma ualIl I l I 
* '

-.. !



path between u and t forward from u, and the path between s and v backward from v. In this

U traversal we mark each visited vertex. The process terminates when we reach a vertex for the

second time. If k is the length of the path to be reported, clearly at most 2k vertices have been

visited by the process. This establishes that the report-type query is executed in time

O(logn+k).

6.4.3. Contact-chain query We can reformulate the problem of contact chains by assuming

without any sacrifice of generality that the reference direction 0 is always the x-axis. In this set-

ting, we have that region r, pushes region r2 if and only if r, is to the left of r2. Hence, the

transitive closure of the "push" relation is the same as relation -- , and variations of 0

correspond to rotations of the subdivision.

r" We assume, with negligible loss of generality, that the slopes of the edges are all distinct.

(In the case of parallel edges, a virtual perturbation of their slopes achieves this simplifying con-

dition.) Thus, if we continuously rotate the subdivision, only one edge at a time becomes hor-

izontal. An elementary clockwise rotation from a given position of 9t is the minimal nonzero

clockwise rotation such that an edge becomes horizontal. An elementary counterclockwise rota-

tion is correspondingly defined. Thus, a full 27c-rotation of 9t is a sequence of elementary rota-

tions.

Since a convex subdivision 9t is also a monotone subdivision, we consider the planar st-

graph G associated with 9t, and its dual G*. It is easy to see that contact chains of 91 are in

one-to-one correspondence with paths in the graph G *.

We consider the following update operations on 91:

JNSERTPOJNT(v,e;e1 ,e 2): Split the edge e=(u,w) into two edges el=(u,v) and

e 2 = (v,w), by inserting vertex v.

REMOVEPOJINT(v,e 1,e2;e): Let v be a vertex of degree 2 whose incident edges,

eI =(u,v) and e2 =(v,w), are on the same straight line. Remove v and replace eI and e2 with

edge e = (u,w).

INSERTSEGMENT (e,u,v,r;r1 ,r 2): Add edge e =(u,v) inside region r, which is decom-

posed into regions rI and r2, with rI to the left of e and r2 to the right

91



REMOVESEGMENT (e,u,v,r1 ,r 2 ;r): Remove edge e=(uv) and merge the regions r,

and r 2 formerly on the two sides of e into region r. [ The operation is allowed only if the subdi-

vision 9V' so obtained is convex. ]

ROTATE (8): Perform an elementary rotation of the subdivision 91. The binary parameter

8 indicates whether the rotation is clockwise or counterclockwise.

To maintain information on the paths of G*, we use the theoretical framework developed in

Sections 6.2 and 6.3, and exchange the roles of G and G*. Operations INSERTPOINT and

REMOVEPOINT on 9t correspond to performing operations INSERTEDGE and REMOVEEDGE

on G*. Operations INSERTSEGMENT and REMOVESEGMENT on 9t correspond to performing

operations EXPANDVERTEX and CONTRACTVERTEX on G*. These correspondences yield

algorithms for performing contact-chain queries and insertions/deletions of vertices and edges in

time 0 (log n).

With regard to the operation ROTATE, let e be the edge of 9t that becomes horizontal at

some time during the rotation. The effect of such rotation on G* is to invert the direction of the

dual edge e *of e (see Fig. 6.11). Hence, operation ROTATE on 9t corresponds to performing a -

REMOVEEDGE operation on G, followed by an INSERTEDGE operation of the same edge in

the reverse orientation.

Let the azimuth of a directed edge be defined counterclockwise with respect to the x-axis,

so that it lies in the range [0,x]. The edge e involved in the rotation can be identified by main-

mining a list of the edges of 9t sorted by increasing azimuth. Specifically, the edge involved in a

clockwise (counterclockwise) elementary rotation is the first (last) edge of this list, and is moved

to the end (front) of the list after the rotation. The list is implemented as a balanced binary tree,

so that edges can be efficiently inserted/deleted as specified by the operations INSERTPOINT,

REMOVEPOINT, INSERTSEGMENT, and REMOVESEGMENT.

In conclusion, all the update operations have 0 (log n) time complexity, which establishes

Theorem 6.2 of Section 6.1.
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CHAPTER 7

DYNAMIC PLANAR GRAPH EMBEDDING

7.1. Introduction

Embedding a graph in the plane is a fundamental problem in several areas of computer sci-

ence, including circuit layout, graphics, and computer-aided design. The problem of testing the

planarity and of constructing a planar embedding of a graph has been extensively studied in the

past years, and the development of linear time algorithms for it has brought significant advances

in algorithm design and analysis [7,24]. Nevertheless, as confirmed by recent results [9, 16, 17],

graph planarity is still a vital area of research, rich in interesting issues to be explored.

In this chapter we consider the problem of incrementally constructing a planar embedding

of a graph. We investigate a dynamic data structure that allows us to perform efficiently the fol-

lowing operations:

(1) queries: given two vertices u and v, determine whether there is a face of the current

embedding whose boundary contains both u and v;

(2) updates: modify on-line the current embedding by adding and/or removing vertices and

edges.

The performance of such a data structure will be measured in terms of (1) the space requirement,

(2) the query and update times, and (3) the preprocessing time.

Formally, our problem can be defined as follows: Let G be a planar graph embedded in the

plane, referred to henceforth as a plane graph. For generality, we allow G to have multiple

edges, and we denote with n and m the number of vertices and edges of G, respectively. We

consider the dynamic embedding problem, which consists of performing the following opera-

tions on G:

TEST (u,v): Test whether there is a face f that has both vertices u and v on its boundary.

If such a face exists, output its name.
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UST (uv): List all the faces that have both vertices u and v on their boundary.

n INSERTEDGE (e,u,v,ff 1 ,f2): Add the edge e = (u,v) to G inside face f, which is decom-

posed into faces fI and f2. Vertices u and v must both be on the boundary of facef.

INSERTVERTEX(e,v;ej,e 2 ): Split the edge e=(u,w) into two edges el=(u,v) and

e 2 = (v,w), by adding vertex v.

REMOVEEDGE (e,u,v,fl,f2;f): Remove the edge e = (u,v), and merge faces f1 and f2

formerly on the two sides of e into face f.

REMOVEVERTEX (e l,e 2 ,v;e): Let v be a vertex of degree two. Remove v and replace

its incident edges eI = (u,v) and e2 = (v,w) with edge e = (u,w).

It is a relatively simple exercise to show that the above repertory of operations is complete for

the class of st-2-connectible planar graphs defined in Section 7.2.

The dynamic embedding problem naturally arises in interactive CAD layout environments.

Applications include the design of integrated circuits, motion planning in robotics, architectural

floor planning, and graphic editing of block diagrams.

We present a data structure that uses 0 (m) space, supports all of the above operations in

0 (log m) time, and can be constructed in 0 (m) time. If G is simple, i.e. it has no multiple edges

and no self-loops, then m =0 (n), and the above bounds become 0 (n) space and preprocessing

S time, and 0 (log n) query and update times. In addition to the good space/time performance

from a theoretical viewpoint, our data structure is also practical and easy to implement, and

therefore suited for real-world applications.

These results are obtained by maintaining on-line an orientation of the graph, called spheri-

cal st-orientation and exploiting the partial order among the vertices, edges, and faces induced

by this orientation. Besides its relevance to this problem, the concept of spherical st-orientation

is of theoretical interest in its own right, and extends the results on bipolar orientations and

cylindric orientations of planar graphs presented in [49,51,521.

This work constitutes also a first step toward the development of an efficient data structure

for the dynamic planarity testing problem, which consists of performing the following operations

on a planar graph G: (1) testing if a new edge can be added to G so that the resulting graph is
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itself planar;, (2) adding and removing vertices and edges.

The rest of this chapter is organized as follows: Section 7.2 contains definitions and prel-

iminary results. Section 7.3 deals with orientations of planar graphs. In Section 7.4, we study

the topological location problem, which consists of performing operations TEST and LIST. Sec-

tion 7.5 describes the full-fledged data structure for the dynamic embedding problem. Finally,

further applications are discussed in Section 7.6.

7.2. Preliminaries

We consider only finite connected graphs without self-loops. We allow multiple edges

between two vertices. For the basic terminology about graphs and planarity, see [6, 15]. Unless

otherwise specified, paths and cycles of a directed graph are assumed to be directed.

First, we recall some definitions on graph connectivity. A cuwvertex of a graph G is a vertex

whose removal disconnects G. Graph G is said to be 2-connected if it has no cutvertices, and 1-

connected otherwise. A block of a 1-connected graph G is a maximal 2-connected subgraph of

G. The proper vertices of a block B of G are the vertices of B that are not cutvertices. The

block-curvertex tree of G is a tree whose nodes represent the blocks and cutvertices of G, and -

whose edges connect each cutvertex v to the blocks that contain v (see Fig. 7.1). A graph G is

st-2-connectible if adding the edge (s,t) to G makes G 2-connected [36]. Clearly, a 2-connected

graph is also st-2-connectible for every pair of vertices s and t. An st-numbering of a graph G

with vertex set V is a bijection 4: V-+[ 1,2, ... , I V I ) such that every vertex v-s,t has neighbors

u and v with 4(u) < 4(v)< 4(w). A graph admits an st-numbering if and only if it is st-2-

connectible [36].

Regarding the dynamic embedding problem, we assume that the vertices, edges, and faces

of the graph are identified by names, which are elements of an ordered set. For example, names

can be integers, alphanumeric strings, or pairs of coordinates. The total order among names will

be referred to as alphabetic order. Regarding the complexity analysis, we assume that a name

uses 0 (1) space, and that the alphabetic comparison between two names can be done in 0 (1)

time. Also, for generality, we assume that the query and update operations use the names as

input parameters.
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i Figure 7.1 (a) A 1-connected graph, and (b) its block-cutverex tree.

Let m be the current number of edges of the graph. We will denote the storage by

Space (in) and the preprocessing tine by Preprocess (in). Also, the time complexity of the vari-
p ous operations will be denoted by Test (i), List (me,k), InsertEdge (m), lnsertVertex (i),

RemoveEdge (in), and Remove Vertex (mn), where k is the number of faces retrieved by the LIST/

operation. Finally, throughout this chapter, log x means max (1 1,1og2x)}.

7.3. Orientations of Planar Graphs

A spherical st-graph is a plane digraph G such that:

Property 1: G has exactly one source (vertex without incoming edges), s, and exactly one sink

(vertex without outgoing edges), t.

Property 2: Every vertex v of G is on some directed simple path from s to t.

Property 3: Every directed cycle y separates s from t, i.e., one of s and t is inside the region of

the plane bounded by y, and the other is outside.
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We can visualize a spherical st-graph as embedded on the surface of a sphere, with s and t

at the South and North poles, respectively (see Fig. 7.2).

The concept of spherical st-graph extends the one of planar st-graph introduced in [36],

which has important applications in the test of graph planarity [36] and the construction of

planar drawings [10, 49, 5 1] (see Chapter 6 for the definition and properties of planar st-graphs).

A spherical st-graph differs from a planar st-graph because it admits (directed) cycles. However,

such cycles must verify the aforementioned Property 3.

The following two lemmas show that spherical st-graphs have the same properties as planar

st-graphs with regard to the circular sequences of edges that are incident upon a vertex (Lemma

6.2 of Chapter 6), and that form the boundary of a face (Lemma 6.3 of Chapter 6).

Lemma 7.1 For every vertex v of G, the incoming (outgoing) edges appear consecutively -

around v (See Fig. 7.2(b)).

Proof: Assume, for a contradiction, that there is a vertex v, vs,t, for which the lemma is not

true (see Fig. 7.3). Then there must be four edges incident upon v, denoted eI = (w 1 ,v),

e2= (v,w 2 ), e3 = (w 3 ,v), and e4 = (v,w 4 ), which appear in this order counterclockwise around v.

By Property 2, there are (directed) paths from s to w I and w 3. Let s' he the vertex farthest from

s that is on both these paths. We denote with iI and R3 the portions of such paths from s' to w I

and w 3 , respectively. The union of it,, 7t3 , el, and e 3 forms an undirected cycle y, which

separates w 2 from w 4. The two regions of the plane delimited by cycle y will be denoted by A

and B, where A is the region that contains vertex w 2. We assume that both A and B contain

cycle y. By Property 2, there must be paths n 2 and 74 from w2 and w 4 to t, respectively. Now,

we have four cases for the relative placement of s and t with respect to cycle . If both s and t

are in A, then R4 intersects y at some vertex (see Fig. 7.3(a)). This creates a cycle that does not

separate s from t. If s is in A and r is in B, then iR2 intersects y, and again we have a cycle that

does not separate s from t (see Figs. 7.3(b-c)). The cases when both s and t are in B, or s is in B

and t is in A, are treated similarly. We conclude the proof by observing that in all cases we have

a contradiction to Property 3. 0
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Example for Lemma 7. 1. (c) Example for Lemma 7.2.
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Lemma 7.2 For every face f of G, the boundary of f consists of two directed paths with com-

mon origin and destination (See Fig. 7.2(c)). ".

Proof: Assume, for a contradiction, that there is a face f for which the lemma is not true (see

Fig. 7.4). Then there are distinct vertices u and v on the boundary of f such that the edges of the

boundary of f incident upon them are all outgoing. We denote these edges with eI = (u,w 1), i

e 2 =(u,w2 ), e 3 =(v,w 3), and e4 =(v,w 4 ), in counterclockwise order on the boundary off. From

Property 2, there are directed paths from s to u and v. Let s' be the vertex farthest from s that is

on both these paths. We denote with x,, and ic, the portions of such paths from s' to u and v,

respectively. Also, we denote by t' the portion of 7,, from s to s'. The union of ic, i,,, and the

portion of the boundary of f clockwise from v to u forms an undirected cycle y, which contains

vertices w 2 and w3. The two regions of the plane delimited by cycle y will be denoted by A and

B, where A is the region that does not contain face f. We assume that both A and B contain cycle

y. From Property 2, there must be paths icl , 7t2, 73, and 7r4 from wI, w 2 , w 3 , and w 4 to t,

respectively. Now, we have four cases for the relative placement of s and t with respect to cycle

(i) s and t are both in A.

Path 7% must intersect at least one of it. and ic,. If it intersects first 7t, then we have

immediately a cycle that does not separate s from t (see Fig. 7.4(a)). Otherwise, let r be the

* intersection vertex of xr with it. Path t4 must intersect either 7t,, or the portion of t,

from w, to r and then ic.. In both cases, we have again a cycle that does not separate s

from t (see Fig. 7.4(b-c)).

(ii) sisinA andtisinB.

Let z' be a path from s to s'. Path t2 must intersect at least one of t. and X'. If it inter-

sects first t. at vertex r, then we have a cycle formed by edge e2 (u, w 2), the subpath of t 2

from w 2 to r, and the subpath of 7t from r to u. If this cycle does not separate s from t, we

are done (see Fig. 7.4(d)). Otherwise, path t2 must intersect 7t' at some vertex q and path

t3 must intersect the directed path consisung of the portion of it2 from w2 to q, the portion

of ie from q to s', and path n,. Hence, we have a cycle that does not separate s from t (see

Fig. 7.4(e)). The last subcase to examine is when t2 intersects first ir,. Let r be the first
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intersection of x2 with x,. Path X3 must intersect the directed path consisting of the portion

of x2 from w2 to r and the portion of path x, from r to v. Hence, 7r3 forms a cycle with the

above path. If this cycle separates s from t, then 7c2 must intersect n' at some vertex q and

form a cycle that does not separate s from r (see Fig. 7.4(f)).

(iii) and (iv) s and t are both in B, or s is in B and t is is in A.

These cases are analogous to the ones above, and their treatment is omitted for brevity. In

all cases we have a contradiction to Property 3, and the proof is completed. 0

Motivated by the previous lemmas, we introduce for spherical st-graphs the same terminol-

ogy as for planar st-graphs, given in Section 6.2 of Chapter 6, which is repeated here for the

reader's convenience. Let V, E, and F denote the set of vertices, edges, and faces of G, respec-

tively. For each element x of V u E Q F, we define vertices LOW(x) and HIGH (x), and faces

LEFT(x) and RIGHT(x), as follows:

(1) If x = v e V, we define LOW(v) = HIGH(v) = v. Also, with reference to Lemma 7.1 and Fig.

* 7.2(b), we denote by LEFT(v) and RIGHT(v) the two faces that separate the incoming and

outgoing edges of a vertex vos,t, where LEFT(v) is the face to the left of the leftmost

incoming and outgoing edges, and R!GHT(v) is the face to the right of the rightmost

incoming and outgoing edges.U
(2) If x =e e E, we define LOW(e) and HIGH(e) as the tail and head vertices of e, respec-

tively. Also, we denote by LEFT(e) and RIGT(e) the faces on the left and right side of e,

respectively.

(3) If x =fe F, we denote by LOW(f) and HIGH(f) the two vertices that are the common ori-

gin and destination of the two paths forming the boundary of f (see Lemma 7.2 and Fig.

7.2(c)). Vertices LOW(f) and HIGH (f ) are called the extreme vertices of face f. Also, we

define LEFT(f)=RIGHT(f)=f. Finally, the two directed paths forming the boundary off

are called the left path and right path of f, respectively.

We assume that the left and right paths of f do not include their endpoints, so that these

paths and the extreme vertices of f form a partition of the boundary of f. Notice that a vertex v is

on the left (respectively, right) path of face f if and only if RIGHT(v) =f (respectively,
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LEFT(v)=j). Hence, from LEFT(v), RIGHT(v), LOW(f), and HIGH(f) we can decide in 0 (1)

time whether vertex v is on the boundary of facef.

Let G be a plane graph, and s and t two distinct vertices of G. A spherical st-orientation of

G is a spherical st-graph whose undirected version is isomorphic to G. G is said to be st-

orientable if it admits a spherical st-orientation. The following theorem provides a characteriza-

tion of st-orientable graphs, and is similar to the characterization of st-numerable graphs given in

[36].

Theorem 7.1 Let G be a plane graph. The following statements are equivalent:

(1) G is st-orientable;

(2) G admits an acyclic spherical st-orientation;

(3) G admits an st-numbering;

(4) G is st-2-connectible.

Also, there are 0 (m) time algorithms for testing if G is st-orientable and constructing a spherical

st-orientation for G.

Proof: It is proved in [36] that (4) (3). Given an st-numbering for G, we can construct an

acyclic spherical st-orientation by orienting each edge from the lowest to the highest numbered

vertex. We have thus (3) =: (2). Clearly, (2) =* (1). To complete the proof of the characteriza-

tion, we show that (1) =: (4). Assume, for a contradiction, that G is not st-2-connectible. Then

there is a cutvertex v of G such that one of the components generated by the removal of v,

denoted by C, does not contain either s or t. Let u be a vertex of C. Any path from s to t through

v is not simple, which is a contradiction.

The algorithm for testing if G is st-orientable consists of verifying that each cutvertex of G

belongs to exactly two blocks (connected components) of G and that each block of G contains no

more than two cutvertices. This takes 0 (m) time. Finally, since computing the st-numbering of

a planar graph can be done in 0 (m) time [14], we also have the result that constructing a spheri-

cal st-orientation takes 0 (m) time. 0
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Now, we turn our attention to operations that update a spherical st-graph by additions and

m deletions of vertices and edges. The operations INSERTEDGE, INSERTVERTEX, REMO-

VEEDGE, and REMOVEVERTEX, defined in the introduction, are suitable for this purpose.

However, further restrictions must be imposed on their applicability in order to ensure that the

resulting graph is itself a spherical st-graph.

Lemma 7.3 Let G be a spherical st-graph, and G' be the directed plane graph obtained by per-

forming operation 11 on G. Depending on n, G' is a spherical st-graph if and only if

(1) for fl=INSERTEDGE (e,u,v,f'f,f 2), edge e must not create a (directed) cycle with the

edges of facef,

(2) for H=INSERTVERTEX (e,v;e 1,e 2 ), there is no restriction;

(3) for f=REMOVEEDGE (e,u,v,flf 2 ;f ), ef=f(u,v) must be an edge such that deg+(u)>2

and deg-(v) 2 (where, as usual, deg+(w) and deg-(w) denote the outdegree and indegree

of a vertex w, respectively);

(4) for fI=REMOVEVERTEX(e 1,e2 ,v;e), v must be a (degree-2) vertex distinct from s and t.

Proof: The proof of (2), (3), and (4) is straightforward. For operation INSERTEDGE, we con-

sider two cases. First, assume that there is a path x on the boundary of f from u to v. If edge

e = (u,v) creates a cycle that does not separate s from t, then by replacing e with xt we have that

G already had a nonseparating cycle, a contradiction. Now, if there is no path on the boundary

of f from u to v, we are in the situation shown in Fig. 7.5. Let 7 be the cycle that does not

separate s from t, and 7c and x2 be paths from s to LOW(f) and from HIGH(f ) to t, respec-

tively. One of these two paths, say xj, must intersect y at some vertex x. This implies that G

already had a nonseparating cycle, formed by the subpath of y from v to x, the subpath of it,

from x to LOW(f), and the subpath of the right path of f from LOW(f) to v. Again, we reach a

contradiction. 1

Corollary 7.1 Let G be a spherical st-graph, and GI and G 2 be the graphs obtained by perform-

ing operations INSERTEDGE (e,u,v,f,f1 ;f2) and INSERTEDGE (e,v,u,f,fj;f2) on G, respec-

tively, where both vertices u and v are on the boundary of face f. Then at least one of G and

G2 is a spherical st-graph.
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Figure 7.5 Example for the proof of Lemma 7.3 ""

Proof: By Lemma 7.3, we onLy have to ensure that the edge to be added does not form directed

cycles with the boundary off. Hence, if there is a (directed) path in the boundary of f from u to --

v, we perform operation INSERTEDGE (e,u,v,f,fi ;f 2 ), while if there is a (directed) path from v

to u, we perform operation INSERTEDGE (e,v,u,f,f 1 ;f2). Both operations are allowed when no

directed path exists between u and v. 0]

7.4. Topological Location

In this section we consider the topological location problem, which consists of performing

efficiently the TEST and LIST operation on a plane graph.
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7.4.1. s/-orientable graphs Let G be a spherical st-graph. From Lemma 7.2, vertices u and v

U of G are on the boundary of face f if and only if one of the following cases occurs (see Fig. 7.6):

Case 1: Both u and v are nonextreme vertices off, i.e.,

V =LEFT(u) or f=RIGHT(u)) and (f =LEFT(v) or f=RIGHT(v));

10 Case 2: u is an extreme vertex off and v is not, i.e.,

(u =LOW(f) or u =HIGH(f)) and (f=LEFT(v) orf =RIGHT(v));

Case 3: v is an extreme vertex of f and u is not, i.e.,

(v =LOW(f) or v =HIGH(f )) and (f =LEFT(u) or f =RIGHT(u));

Case 4: both u and v are extreme vertices of f, i.e.,

(u =LOW(f ) and v = HIGH(f )) or (u = HIGH(f ) and v =LOW(f)).

In order to check Cases 1-3, we store for each vertex v the faces LEFT(v) and RIGHT(v),

and for each face f the vertices HIGH(f) and LOW(f). For each of these cases, the test is car-

ried out in 0 (1) time. To check the remaining Case 4, we store with each vertex v a search table

BELOW(v) whose elements are the pairs (fLOW(f)) such that v = HIGH(f ), sorted according

i to the alphabetic order of the name of LOW(f). Hence, the test for Case 4 consists of searching

for vertex u in BELOW(v) and for vertex v in BELOW(u), which takes 0(logm) time. This

* V 1?

I f V f -

UU

fU

(2) (3) (4) u

Figure 7.6 The four cases for two vertices on the same face
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proves the following theorem:

Theorem 7.2 There exists a data structure for the topological location problem in spherical st-

graphs with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test (m) = 0 (logm); List (m,k) = 0(logm +k).

Corollary 7.2 There exists a data structure for the topological location problem in st-orientable

graphs with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test (m)=O(logm); List (m,k)=O(logm +k).

Proof: Construct a spherical st-orientation for G and apply Theorem 7.2. 0

7.4.2. General plane graphs For plane graphs that are not st-orientable, the algorithm of the

preceding subsection cannot be directly applied. Instead, we will combine the above technique

with a data structure that takes into account the plane arrangement of the blocks of the graph. .

In the following, we will be interested in preprocessing a graph G in order to determine

quickly whether there is a block that contains two given vertices u and v. This can be done

efficiently by orienting the block-cutvertex tree T of G so that it becomes a rooted source tree

with an arbitrarily selected block at the root. In the example of Fig. 7.1, the edges of the block-

cutvertex tree are oriented from bottom to top. Also, we store in every vertex v a pointer

node(v), where, if v is a cutvertex, node(v) points to the representative node of cutvertex v in T,

while if v is a proper vertex of a block B, node(v) points to the representative node of block B in

T. It is simple to verify that there is a block containing vertices u and v if and only if one of the

following cases is verified:

(1) node(u) = node (v);

(2) node(u) is the father of node(v) in T;

(3) node(v) is the father of node(u) in T;

(4) the fathers of node (W) and node (v) are the same node of T, associated with a block.
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We conclude

Lemma 7.4 There exists a data structure with 0 (m) space and preprocessing time that allows

for testing if two vertices belong to the same block in 0 (1) time.

Now, let G* be the dual graph of a plane graph G. A face of G that is a cutvertex of G* is

called a cutface (of G). The following simple lemma shows that there is a bijection between the

blocks of G and the ones of G.

Lemma 7.5 [22, p. 124, ex. 11.4] A subset of edges of G forms a block of G if and only if their

duals form a block of G*.

We define now a partial order on the set of blocks, vertices, and faces of G. In the follow-r "
ing definitions we adopt the convention that the faces of a block B of G have the same names as

the corresponding faces in G.

Let B be a block of G. The outer face of B, denoted OUTER (B), is the face f whose boun-

i dary includes the external boundary of B. In turn, B is called an inner block of face OUTER (B).

Notice that OUTER (B) is either a cutface or the external face. Now, let f be a face distinct from

the external face. We denote with OUTER(f) the block B such that f is an internal face of B.

Finally, let v be a vertex. If there is a block B containing v such that v is not on the external

boundary of B, then we define OUTER (v) = B. Otherwise, there is a (unique) face f containing v

such that, for no block B containing v, B = OUTER (V), and we define OUTER (v) =f. As a

straightforward consequence of the above definitions, we have

Lemma 7.6 The graph of relation OUTER is a directed source tree, whose root is the external

face.

Figure 7.7 shows a 1-connected graph and the corresponding OUTER relation for the

blocks, cutvertices, and cutfaces.
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Theorem 7.3 Let u and v be vertices of G that are on the boundary of the same face f. If u and v

3belong to the same block B, then they are also on the boundary of face f in B. Otherwise, one of

the following cases arises:

(1) f=OUTER(u) andf=OUTER(v);

W (2) f=OUTER(u) and v is on facefof block OUTER(f);

(3) f=OUTER(v) and uison facefof block OUTER(f).

Proof: A straightforward consequence of the definition of the OUTER relation. 0

The data structure for the topological location problem in general plane graphs consists of:

(1) A data structure to test whether two vertices belong to the same block, see Lemma 7.4.

(2) A separate data structure for performing operations TEST and LIST in a 2-connected graph |

(see the previous subsection), for each block B of G.

(3) OUTER pointers for the blocks, vertices, and faces of G.

From Theorem 7.3, we conclude

Theorem 7.4 There exists a data structure that solves the topological location problem for gen-

eral plane graphs with the following performance:

* Space (m) = Preprocess (m) =0(m);
Test (i) =O(logm); List (m,k) = O(logm + k).

7.4.3. Average query time Let QM(n,m) be the time to perform the query operation

TEST(u,v). We have shown in the previous subsection that in the worst case

Qv(n,m) = 0 (log n). Here, we consider the average query time over all possible [ queries,

defined by: Q(n,m)= - lQu,(n,m).

Theorem 7.5 In the previously described data structure for the topological location problem, the

average time for the TEST operation over all possible queie isQh)0loM] n
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particular, if the graph is simple, then Q(n,m) = (1).

Proof: From the description of the algorithm for the TEST operation we have that

Q,,(n,m)=O (log deg(u)+ log deg(v)). Hence, [ J Q(nm)=0 (n log deg(v)). The proof
V

is completed observing that I deg- (v) = m.
V

7.5. Dynamic Planar Graph Embedding

In this section, we present the complete data structure for the dynamic embedding problem.

First, we consider the problem in spherical st-graphs, and then extend the results to undirected

graphs using spherical st-orientations.

7.5.1. Spherical st-graphs In this subsection we describe a data structure for efficiently solv-

ing the dynamic embedding problem for spherical st-graphs. Let G be a spherical st-graph.

The data structure has a record for each vertex, edge, and face of G. The records for the

vertices are arranged in a vertex-tree TV, which is a balanced search tree whose nodes are

ordered according to the alphabetic order of the names of the vertices. Similarly, the records of

the edges and faces are arranged in alphabetic order in a face-tree TF, and in an edge-tree TE,

respectively. The above trees allow us to access in 0 (logim) time the records associated with

the vertices, edges, and faces involved in the current operation.

The record for a face f stores the following information:

(1) f name of the face;

(2) HIGH(f ): pointer to the record of the topmost vertex off,

(3) LOW(f): pointer to the record of the bottommost vertex of,

(4) pointers to two balanced search trees, LPATH(f) and RPATH(f), associated with the left

and right paths of face f, respectively. The nodes of each such tree represent the vertices

and edges of the corresponding path, and are sorted according to the direction of the path.

The roots of LPATH(f ) and RPATH (f ) point back to the record off.
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The record for a vertex v stores the following information:

U (1) v: name of the vertex;

(2) deg+(v), deg-(v): outdegree and indegree of v.

(3) PLEFT(v): pointer to the representative of v in the tree RPATH(f ), where f=LEFT(v);

-m(4) PR!GHT(v): pointer to the representative of v in the tree LPATH(g), where g =RIGHT(v);

(5) BELOW(v): pointer to a balanced search tree whose nodes store pointers to the records of

the faces f such that v =HIGH(f). The nodes of BELOW(v) are sorted according to the

alphabetic order of the names of the vertices LOW(f).

The record for an edge e stores the following information:

(1) e: name of the edge;

(2) pointers to the records of the vertices LOW(e) and HIGH(e);

(3) pointers PLEFT(e) and PRIGHT(e) to the representatives of e in the trees RPATH(f) and

LPATH(g), where f = LEFT(e) and g =RIGHT(e).

We show in Fig. 7.8 a spherical st-graph and a fragment of the data structure for it.

Using the above data structure, the TEST operation can be performed with the same stra-

tegy as in the static case. The only difference is that now the faces to the left and right of u and v

* are not immediately available, and must be retrieved by walking up to the roots of the trees that

contain the representatives of u and v pointed to by PLEFT(u), PRIGHT(u), PLEFT(v), and

PRIGHT(v).

With regard to the INSERTEDGE operation, testing for its applicability can be done by a

simple modification of the TEST algorithm.

Now, assume that f, is to the left of e and f2 is to the right of e. We partition the left path

of finto subpaths LI, L 2 , and L 3 , where L2 is the left path of fl. Notice that LI and/or L3

might be empty. Analogously, we partition the right path of f into subpaths R 1 , R 2 , and R 3 ,

where R 2 is the right path of f2. After the insertion of edge e, the new boundaries of f, and f2

are as follows (see Fig. 7.9):
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LPATH(f 1 )=L 2 ; RPATH(f1 )=RjeR3 ; LPATH(f 2 )=L~eL3 ; RPATH(f 2 )=R 2.

i Hence, the LPATH and RPATH trees of the new faces are obtained by splitting LPATH(f) and

RPATH(f) at vertices u and v, and splicing appropriately the resulting trees. Standard tech-

niques allow us to perform the above split and splice operations in logarithmic time (see for

example [39, pp. 213-216]).

The remaining updates of the data structure are as follows:

(1) Insert into TE a new record for edge e, and increment counters deg+(u) and deg-(v).

(2) Delete from TF the record of face f, and insert new records for faces fI and f 2.

(3) Delete from BELOW(HIGH(f)) the node pointing to f, and insert into BELOW(HIGH(f 1))

and BELOW(HIGH(f 2 )) nodes pointing to f, and f2, respectively.

The INSERTVERTEX (e,v,e 1,e2) operation is performed as follows:

(1) Delete from TE the record for edge e, and insert new records for edges e 1 and e 2 .

I' V

V Y R3

f , 

e

eA q2 £L 2 f Al 2 R2 L 2 L2f, 12 R2

12 A2 R

U LU

(a)(b) ( (d)

Figure 7.9 Restructuring of the face boundaries after an
INSERTEDGE operation. (a) u and v on left path; (b) u on
left path and v on right path; (c) u bottommost and v on
right path; (d) u bottommost and v topmost.
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(2) Insert into TV a new record for vertex v.

(3) Find the faces f and g respectively to the left and right of edge e by walking up to the roots

of the trees that contain PLEFT(e) and PRIGHT(e).

(4) Replace the leaf representative of e in RPATH(f) by a subtree with root v and children e1

and e 2, and rebalance RPATH(f).

(5) Replace the leaf representative of e in LPATH(g) by a subtree with root v and children e1

and e 2 , and rebalance LPATH(g).

(6) Set BELOW(v) :=0.

The above data structure also supports operations REMOVEEDGE and REMOVEVERTEX.

In fact, the REMOVEEDGE operation can be performed by reversing the transformations on the

data structure realized by the algorithm for the INSERTEDGE operation. Similarly, the REMO-

VEVERTEX operation is the reverse of the INSERTVERTEX operation. Notice also that, by

Lemma 7.3, the counters deg+(v) and deg-(v) allow us to test the feasibility of each such opera-

tion in 0 (1) time. The time complexity analysis of the various operations is straightforward,

and we conclude

Theorem 7.6 There is a data structure for the dynamic embedding problem in spherical st-

graphs with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test (m) =0(ogm); List (m,k) = 0 (logm +k);

InsertEdge (m) = InsertVertex (m) = RemoveEdge (m) = RemoveVertex (m) = 0 (log m).

In the execution of an update operation we can distinguish the search time spent in finding

the nodes of the various trees involved in the operation, and the restructuring time that takes into

account the update and rebalancing of the trees. The next theorem shows that in our data struc-

ture the amortized restructuring time for a sequence of INSERTEDGE and INSERTVERTEX

operations is optimal. For the definition of amortized time complexity, see [56].

Theorem 7.7 There exists a data structure for the dynamic embedding problem in spherical st-

graphs such that:
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(1) The space occupation and time complexity of the various operations are the same as in

a* Theorem 7.6.

(2) In a sequence of INSERTEDGE and INSERTVERTEX operations, the amortized restructur-

ing time complexity of each such operation is 0 (1).

Proof: Use 2-4 trees (which are equivalent to red-black trees [20)) to realize trees Tp, Tv, TE,

and BELOW(v). Such trees have 0 (1) amortized rebalancing time for insertions and deletions

[26]. With regard to the LPATH and RPATH trees, their manipulation in a sequence of INSER-

TEDGE and INSERTVERTEX operations involves insertions and the kind of generalized split-

tings considered in (231. It is shown there that circular level-linked 2-4 trees support efficiently

a sequence of insertions and generalized splittings. With arguments similar to the ones

developed in [23] we can show that by realizing the LPATH and RPATH trees by circular level-

C_ linked 2-4 trees, the amortized rebalancing time for LPATH and RPATH is 0 (1). 0

7.5.2. st-orientable graphs For st-orientable plane graphs, we maintain on-line a spherical st-

3l orientation and use the data structure previously described. Operations TEST, LIST, and

INSERTVERTEX do not require any modifications. In connection with operation

INSERTEDGE (e,u,v,ftf1 ,f2), we have to select the direction of edge e so that it does not intro-

duce cycles internal to face f. By Corollary 7.1, this can be done easily by reversing the direc-

tion whenever the INSERTEDGE algorithm rejects the operation. This proves

Theorem 7.8 There is a data structure that supports operations TEST, LIST, INSERTEDGE, and

INSERTVERTEX in a st-orientable plane graph with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test (m)=O(logm); List (m,k)= O(logm +k);
InsertEdge (i) = InsertVertex (m) = 0 (log m).

In regard to the REMOVEEDGE and REMOVEVERTEX operations, we are faced with the

difficulty that the data structure acts on a spherical st-orientation of the graph, therefore permit-

ting only deletions that preserve the st-structure of the orientation. We say that a vertex (edge) is

free if operation REMOVEVERTEX (REMOVEEDGE) can be performed on it in the spherical
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st-orientation; we say that it is locked otherwise. At any time the vertices and edges of the graph

are partitioned into free and locked, and we are allowed to delete only vertices and edges that are

free. We thus have

Theorem 7.9 The data structure of Theorem 7.8 supports also operations REMOVEEDGE and

REMOVEVERTEX on free edges and vertices in 0 (logim) time.

In several layout applications, design methodologies limit the freedom of the designer in

making arbitrary updates to the layout. For example, well known hierarchical design strategies

for VLSI circuits build a layout in a top-down fashion by means of successive refinements.

In the following, we show that the class of free edges and vertices is sufficiently large to

support a hierarchical deletion scheme that allows us to "undo" any INSERTEDGE and

INSERTVERTEX operation performed m the past (not just the last operation). For instance, we

define the hierarchical embedding problem as a variation of the previously discussed dynamic

embedding problem, where the following restrictions are placed on the REMOVEEDGE and

REMOVEVERTEX operations:

(1) An edge can be deleted by a REMOVEEDGE operation only if it was created (at any time

in the past) by means of an INSERTEDGE operation.

(2) A vertex can be deleted by a REMOVEVERTEX operation only if it was created (at any

time in the past) by an INSERTVERTEX operation.

In Fig. 7.10 we show a sequence of update operations in an instance of the hierarchical embed-

ding problem.

The aforementioned restrictions on the REMOVEEDGE and REMOVEVERTEX operations

can be enforced by storing with each edge e two flags, denoted FREE-TAIL(e) and

FREE-HEAD(e), which are associated with the head and tail of edge e in the spherical st-

orientation, respectively. We use these flags to maintain the invariant that an edge e can be

removed if and only if both FREE-TAIL(e) and FREE-HEAD(e) are set. The manipulation of

the flags in the various operations is straightforward. In the example of Fig. 7.10, a flag in the

"set" condition is indicated by showing the corresponding endpoint unconnected.
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It is not difficult to show that the free edges and vertices include the ones that can be

deleted in an instance of the hierarchical embedding problem. We have thus the following

theorem:

Theorem 7.10 There exists a data structure that allows us to solve the hierarchical embedding

problem for st-orientable plane graphs with the following performance: ,
Space (M) = Preprocess (m) =0 (m);

Test (m)=O(logm); List (m,k)=O(logm +k);
InsertEdge (mW) = InsertVertex (in) = RemoveEdge (m) = RemoveVertex (m) = 0 (log m).

7.5.3. General plane graphs For general plane graphs we add to the repertory the following
operations, which allow respectively to add and remove an elementary block to the graph:

ATTACH (e,v,u,f): Add vertex v and edge (u,v) inside face f

DETACH (e,v,u,f): Remove the degree-I vertex v and its incident edge e =(u,v), which

ie in facef.

In the following, we will provide an amortized 0 (log m) time bound for operation INSER- -

TEDGE, and a worst-case O(logm) time bound for the remaining operations. According to

standard conventions in amortized complexity analysis [56], this means that a sequence of m

operations starting from an initial graph consisting of a single edge takes 0 (m log m) time.

First, we dynamize the data structure that tests whether two vertices belong to the same

block of a graph G. We represent the oriented block-cutvertex aee T of G by means of a bal-
anced search tree for the children of each node. Also, we store with each block B a pointer
PROPER (B) to a balanced search tree whose nodes represent the proper vertices of B. In turn,
each proper vertex v of B has a pointer to its representative in the tree PROPER (B). We have

Lemma 7.7 There exists a data structure with O(m) space and preprocessing time that allows

for testing whether two vertices belong to the same block in 0(logm) time (worst-case), and

supports operations INSERTVERTEX and ATTACH in 0 (log m) worst-case time, and operation

INSERTEDGE in 0(logm) amortized time.
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ii

We now show how to dynamically maintain the OUTER relation. For each block B, we

*define INT(B) as the list of the cutvertices of B such that OUTER (v) = B. Also, we define a list

EXT(B) for each block B and a circular list INNER (f ) for each cutface f by means of the follow-

ing constructive procedure.

Consider a cutface f whose outer block is B 0 . Initially, all curvertices of f in B0 are

marked, while the remaining cutvertices of f are unmarked. Also, all the inner blocks of f are

initially unmarked. Suppose now that we traverse the boundary of f counterclockwise, starting

at a cutvertex. Whenever we traverse an edge of an unmarked block B, we add (a representative

of) B into !NNER(f) and mark B. Also, whenever we encounter an unmarked cutvertex v, we

mark v and add (a representative of) v into the list EXT(B) of the first block B in the current

INNER(f) that contains v. At the end of the traversal, INNER(v) will contain all the inner

r blocks off, and the lists EXT(B) will contain all the curvertices v of f such that f= OUTER (v).

Notice that each block B is contained in exactly one INNER (f) list, and each cutvertex v is con-

tamined in exactly one EXT(B) or INT(B) list.

In the example of Fig. 7.11 (a) we have

INNER (f) =(B 2 ,B 1,B 3,B 5 ,B 4 ,B 6 ,B 9 ,B 7 ,B g);

EXT(B 2 )=(V 1 ,V 2 ); EXT(B 3 )=(v 4 ); EXT(Bs)=(v 5 ,v 6 );EXT(B7 )=(v 7 );

EXT(B 1) = EXT(B 4 ) =EXT(B 6) =EXT(B S) = EXT(B 9) = 0.

Implementing the above lists by means of balanced search trees, OUTER(-) can be easily

retrieved in O(logm) time, so that the complexity of the TEST and LIST operations is the same

as in the static case.

Now, we describe the transformations of the data structure due to the execution of opera-

tion INSERTEDGE (e,u,vf;f ,f2). If face f is not a cutface and is part of block B, we simply

perform the operation in the data structure of B. Otherwise, edge e and a sequence of blocks of

G, called old-blocks are merged into a new block, called new-block. In the example of Fig.

7.11 (b), the old-blocks are B 1, B 2 , and B 3 , and the new-block is the union of B 1 , B 2 , B 3, and

edge e = (u,v).

Specifically, let gt(w) be the node of the block-cutvertex tree T of G associated with vertex

w (i.e., if w is a cutvertex then t(w) is the node representing w, and otherwise gt(w) is the node
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representing the block of w). The old-blocks are exactly the ones on the path of T from p.(u) to

it(v). Also, in general both fi and f 2 will be cutfaces in the updated embedding.

In conclusion, the modification of the block structure caused by the INSERTEDGE opera-

tion requires that we set up a new data structure for the new-block B, and new INNER lists for f,

andf 2.

Now, we show that the data structure for B can be set up by reorienting all but one old-

block, called base-block, which is chosen as an old-block with maximum number of edges.

Indeed, let the old-blocks be B 1 , - ,Bj, with u e B I and v e B1, and let vi, i = 1, . - 1,

be the cutvertex between Bi and Bi+I. Also, let v0 = u and v, =v. (In the example of Fig.

7.11(b) I = 3.) Denoting by Bj the base-block, at least one of the directed edges (vj -.1,vj) and

(vj,vj_ .), say (vj,vj_.!), can be added toBj while preserving the spherical st-orientation. In thisC- -case, we construct a new acyclic spherical st-orientation for each Bi , isj, using vi_ I as the

source and vi as the sink, and we direct e from v, to v 0 . (The case when (vj ,vj) can be added

to Bj is analogous.) The resulting orientation of the new-block B is a spherical st-orientation,

from which the data structure for B can be constructed in time:

l

O(logm+ mi- max mi),
i=1 ifl' .

where mi is the number of edges of Bi .

Lists INNER (fl) and INNER (f2) are obtained from INNER (f) by

(1) removing the (representatives of the) old-blocks;

(2) splitting the resulting list into INNER (fl) and INNER (f2) with an appropriate cut; and

(3) possibly adding to one of these lists (a representative of) the new-block B.

With regard to the EXT lists, we form INT(B) and EXT(B) by a sequence of 0 (1) split and

splice operations on the EXT lists of the old-blocks.

In the example of Fig. 7.11, we have

INNER(ft)f(B,B9,B 7 ,Bs); INNER(f 2)=(B 5 ,B 4 ,B 6); EXT(B)=(v 2 );INT(B)=(v1 ,v 4 ).
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Theorem 7.11 There is a data structure that supports operations TEST, LIST, INSERTEDGE,

INSERTVERTEX, and ATTACH with the following performance:
Test (in) f O(logm); List (m,k) = O(logm +k);

InsertEdge (m) = 0 (log m) (amortized); InsertVertex (m) = Attach (m) = O (log m).

Proof: The amortized complexity analysis makes use of the following potential function:

(D= mi log
i=1i

b
where B 1, "'" ,B, are the current blocks of G, and mi is the number of edges ofB ( mi =m).

Notice that - m log m : 0: <0. It is interesting to observe that the function ) is similar to the

entropy function used in information theory. Informally, we can say that when the old-blocks

are merged together into the new-block, 0> decreases to compensate for the work spent in the

merge process. For simplicity, consider the case when two old-blocks, B 1 and B 2, are merged

into a new-block B*, where mi is the number of edges of Bi (i = 1,2) and m* is the number of

blocks of B*. By an appropriate choice of the time unit, we have that operation INSERTEDGE

is executed in time

t =logm +2min (m1 , m 2 ).

Now, the variation Ac? of potential is given by

A4D=m* log - -1m log + 2 log

Definex ='- andx 2 =-,. Clearly, x 1 +x 2 =1. We can write
m m

AOlog~LxigL
*A= = (X '+ x2)l0g ml=7-I ~ -I +X210g 9

S- xllog L+x 2 log 1 =-H(x,x 2 ).

where H(x1 ,x 2 ) is the binary entropy function of information theory. We show in Fig. 7.12 a

plotofH(x1,l-xI) in the intervalx 1 e [0,1]. It is easy to see that
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TES* (f,g): Test if there is a vertex v that is on the boundaries of both faces f and g. In

case such a vertex v exists, output its name.

LIS7 (f,g): List all the vertices that are on the boundaries of both faces f and g.

EXPAND VERTEX (e,f,g,v;v 1,v 2): Expand vertex v into vertices v 1 and v2 connected by

an edge e on the boundary of faces f and g.

CONTRACTVERTEX(e,f,g,vV 2;v): Contract the edge e=(v1 ,v 2) on the boundary of

faces f and g, and call v the vertex resulting from the contraction of v I and v 2.

DUPLICATEEDGE (e,f;e1 ,e 2): Replace the edge e with two multiple edges, eI and e2 ,

with the same endpoints, and call f the resulting face between them.

MERGEEDGE (e 1 ,e 2,f;e): Let f be a face whose boundary consists of two multiple

edges, eI and e 2 . Remove f by merging eI and e2 into a new edge e.

We can show that this problem is the dual of the dynamic embedding problem by extending

the notion of duality of undirected plane graphs to spherical st-graphs.

The dual graph G * of a plane digraph G is the plane digraph defined as follows: the ver-

tices of G* are the faces of G; for each edge e of G there is an edge e * of G* from face LEFT(e)

to face RIGHT(e). A cylindrical s*t*-graph is a plane digraph G whose dual G* is a spherical

st-graph. An (undirected) plane graph is said to be st*-orientable if it can be oriented to become

a cylindrical s**-graph. Notice that every 2-connected graph is s*t*-orientable. Using the

results of Section 7.4 and duality arguments, we obtain

Theorem 7.12 There is a data structure that allows us to solve the dual dynamic embedding

problem for cylindrical s*t*-graphs with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test*(m)=O(logm); List*(m,k)=O(ogm +k);

ExpandVertex (m) = DuplicateEdge (m) = ContractVertex (m) = MergeEdge (m) = 0 (log m).

Further results can be obtained by dualizing the remaining theorems of the previous sec-

tion.

126



The hierarchical dual embedding problem is defined as a variation of the dynamic embed-

m ding problem where the CONTRACTVERTEX and MERGEEDGE operations can performed

only on edges (respectively, faces) previously inserted by the EXPAND VERTEX (respectively,

DUPLICATEEDGE) operation. We have

- Theorem 7.13 There is a data structure that allows us to solve the hierarchical dual embedding

problem for s*t*-orientable plane graphs with the following performance:

Space (m) = Preprocess (m) = 0 (m);
Test*(m) =O(logm); List*(m,k)=O(logm+k);

ExpandVertex (m) = DuplicateEdge (m) = ContractVertex (m) = MergeEdge (m) = 0 (log m).

7.6.2. Computing separating pairs Let G be a 2-connected plane graph. A separating pair of

graph G is a pair of distinct vertices of G whose removal disconnects G. The identification of

separating pairs is important in problems of fault-tolerance of networks.

Lemma 7.8 Let G be a 2-connected plane graph. Vertices u and v form a separating pair of G if

and only if

(1) u and v are adjacent and there are at least three faces whose boundary contains both u and

v; or

(2) u and v are not adjacent and there are at least two faces whose boundary contains both u

and v.

Hence, we can test whether two vertices form a separating pair by a simple modification of

the algorithm for operation LIST (u,v), which halts as soon as two or three faces have been

reported. We obtain

Corollary 7.4 The data structure of Theorem 7.10 allows us to test whether two given vertices

form a separating pair in 0(logm) time.
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